Supplemental Materials For Psychological Methods Website

LISREL Syntax For Fitting the Unconstrained, Constrained and GAPI Approaches with 3-matched Product Indicators

Unconstrained Approach

Unconstrained 3-match

X- observed variables have been centered

ML estimation

DA NI=12 NO=500

RA FI=int.dat

LA

y1 y2 y3 x1 x2 x3 x4 x5 x6 x1x4 x2x5 x3x6 ! x1x4, x2x5, x3x6 are indicators of the latent interaction factor

MO NY=3 NE=1 NX=9 NK=3 LY=FU,FI LX=FU,FI PS=SY,FR PH=SY,FR TE=DI,FR TD=DI,FR KA=FR TY=FR

! FI PH 3 1 PH 3 2 ! can be used for known normally distributed KSI1, KSI2

! ST 0 PH 3 1 PH 3 2 ! can be used for known normally distributed KSI1, KSI2

VA 1 LY 1 1

FR LY 2 1 LY 3 1

VA 1 LX 1 1 LX 4 2 LX 7 3

FR LX 2 1 LX 3 1 LX 5 2 LX 6 2 LX 8 3 LX 9 3

FR GA 1 1 GA 1 2 GA 1 3

FI KA(1) KA(2)

VA 0 KA(1) KA(2) ! see Equation (2)

CO KA(3)=PH(2,1) ! see Equation (2)

OU ND=6 AD=off EP=0.0001 IT=500 XM

Constrained Approach

Constrained 3-match

X- observed variables have been centered

ML estimation

DA NI=12 NO=500

RA FI=int.dat

LA

y1 y2 y3 x1 x2 x3 x4 x5 x6 x1x4 x2x5 x3x6

MO NY=3 NE=1 NX=9 NK=3 LY=FU,FI LX=FU,FI PS=SY,FR PH=SY,FR TE=DI,FR TD=DI,FR KA=FR TY=FR

FI PH 3 1 PH 3 2

ST 0 PH 3 1 PH 3 2

VA 1 LY 1 1

FR LY 2 1 LY 3 1

VA 1 LX 1 1 LX 4 2 LX 7 3

FR LX 2 1 LX 3 1 LX 5 2 LX 6 2 LX 8 3 LX 9 3

FR GA 1 1 GA 1 2 GA 1 3

FI KA(1) KA(2)

VA 0 KA(1) KA(2) ! see Equation (2)

CO KA(3)=PH(2,1) ! see Equation (2)

!the unconstrained approach does not include the following set of constraints

CO LX 8,3 = LX 2 1 * LX 5 2

CO LX 9,3 = LX 3 1 * LX 6 2

CO PH 3 3 = PH(1,1)*PH(2,2)+ PH(2,1)** 2 !the GAPI approach does not include this constraint

CO TD 7 7 = PH(1,1)*TD(4,4)+ PH(2,2)*TD(1,1)+TD(1,1)*TD(4,4)

CO TD 8 8 = LX(2,1)**2*PH(1,1)*TD(5,5)+ LX(5,2)**2*PH(2,2)*TD(2,2)+TD(2,2)*TD(5,5)

CO TD 9 9 = LX(3,1)**2*PH(1,1)*TD(6,6)+ LX(6,2)**2*PH(2,2)*TD(3,3)+TD(3,3)*TD(6,6)

OU ND=6 AD=off EP=0.0001 IT=500 xm

GAPI Approach

GAPI 3-match

X- observed variables have been centered

ML estimation

DA NI=12 NO=500

RA FI=int.dat

LA

y1 y2 y3 x1 x2 x3 x4 x5 x6 x1x4 x2x5 x3x6

MO NY=3 NE=1 NX=9 NK=3 LY=FU,FI LX=FU,FI PS=SY,FR PH=SY,FR TE=DI,FR TD=DI,FR KA=FR TY=FR

VA 1 LY 1 1

FR LY 2 1 LY 3 1

VA 1 LX 1 1 LX 4 2 LX 7 3

FR LX 2 1 LX 3 1 LX 5 2 LX 6 2 LX 8 3 LX 9 3

FR GA 1 1 GA 1 2 GA 1 3

FI KA(1) KA(2)

VA 0 KA(1) KA(2) ! see Equation (2)

CO KA(3)=PH(2,1) ! see Equation (2)

! except for one constraint not used in GAPI, the following are identical to those in the constrained approach

CO LX 8,3 = LX 2 1 * LX 5 2

CO LX 9,3 = LX 3 1 * LX 6 2

CO TD 7 7 = PH(1,1)*TD(4,4)+ PH(2,2)*TD(1,1)+TD(1,1)*TD(4,4)

CO TD 8 8 = LX(2,1)**2*PH(1,1)*TD(5,5)+ LX(5,2)**2*PH(2,2)*TD(2,2)+TD(2,2)*TD(5,5)

CO TD 9 9 = LX(3,1)**2*PH(1,1)*TD(6,6)+ LX(6,2)**2*PH(2,2)*TD(3,3)+TD(3,3)*TD(6,6)

OU ND=6 AD=off EP=0.0001 IT=500 xm