FILENAME:SMEC413.docx
SCHOOL OF ENGINEERING &TECHNOLOGY / MECHANICAL & AUTOMOBILE ENGINEERING DEPARTMENT / VIITERM / FOURTH YEAR1 / Course number / MEC413
2 / Course Title / FINITE ELEMENT METHODS (DE 2-ME&AE)
3 / Credits / 4
4 / Contact Hours (L-T-P) / 4-0-0
5 / Course Objective / The aim of the course is to provide the participants an overview on Finite Element Method, Material models, and Applications in Mechanical Engineering.
6 / Course Outcomes / On successful completion of this module students will be able to
- Differentiate partial differential equation, elliptic, Hyperbolic & parabolic pde.
- ImplementRitz and Rayleigh Ritz methods, Method of weighed residuals approximate method. Introduction to FEM using one-dimensional problems
- Implement Finite Difference Method for the Solution of elliptic, Hyperbolic & parabolic partial differential equation.
- Understand Point collocation, Sub domain collocation, Least squares, Galerkin method.
- Understand variational calculus,
- Demonstrate Geometric & natural boundary conditions, Basic Concept of Finite Element Method.
- Compare approximate solution with Analytical results.
- Explain Solution of static problems and case studies in stress analysis of Mechanical component.
- ExplainIso-parametric Elements and Analysis using Iso-parametric Elements.
- Demonstrate Automatic meshing techniques.
- To ImplementFEA using 2D and 3D elements and Semi-discrete approach for unsteady problems
7 / Outline syllabus
7.01 / MEC413.A / Unit A / Approximate Solution Methods
7.02 / MEC413.A1 / Unit A Topic 1 / Ritz and Rayleigh Ritz methods
7.03 / MEC413.A2 / Unit A Topic 2 / Method of weighed residuals, General concept
7.04 / MEC413.A3 / Unit A Topic 3 / Point collocation, Subdomain collocation
7.05 / MEC413.A4 / Unit A Topic 4 / Least squares, Galerkin method
7.06 / MEC413.B / Unit B / Finite Difference Method
7.07 / MEC413.B1 / Unit B Topic 1 / Characteristics and classification of PDE
7.08 / MEC413.B2 / Unit B Topic 2 / Solution of elliptic, Hyperbolic & parabolic PDE using Finite Difference Method.
MEC413.B3 / Unit B Topic 3 / Introduction to FEM using one-dimensional problems
7.09 / MEC413.C / Unit C / Introduction to Finite Element Method
7.10 / MEC413.C1 / Unit C Topic 1 / Introduction to variational calculus
7.11 / MEC413.C2 / Unit C Topic 2 / The differential of a function; Euler-Lagrange equation, Geometric & natural boundary conditions
7.12 / MEC413.C3 / Unit C Topic 3 / Basic Concept of Finite Element Method, Principle of potential energy
7.13 / MEC413.C4 / Unit C Topic 4 / Derivation of Stiffness and Mass matrices for a bar, A beam and A shaft, Comparison with Analytical results.
7.14 / MEC413.C5 / Unit C Topic 5 / Interpolation and Shape functions; Solution of static problems and case studies in stress analysis of Mechanical component
7.15 / MEC413.D / Unit D / Isoparametric Elements
7.16 / MEC413.D1 / Unit D Topic 1 / Analysis using Isoparametric Elements. Element types.
7.17 / MEC413.D2 / Unit D Topic 2 / numerical integration, error analysis. FEA using 2D and 3D elements
7.18 / MEC413.D3 / Unit D Topic 3 / Plain strain and plain stress problems, FE using plate shell elements.
7.19 / MEC413.E / Unit E / Importance of Finite Element Mesh
7.20 / MEC413.E1 / Unit E Topic1 / Automatic meshing techniques
7.21 / MEC413.E2 / Unit E Topic2 / Case studies using FEM for design of simple element geometries such as a tapered bar
7.22 / MEC413.E3 / Unit E Topic3 / A plate with a hole. Semi-discrete approach for unsteady problems
8
8.1 / Course work: 30%
8.11 / Attendance / None
8.12 / Homework / Three best out of 4 assignments: 20 marks
8.13 / Quizzes / Two 30-minutes surprise quizzes: 10 marks
8.14 / Projects / None
8.15 / Presentations / None
8.16 / Any other / None
8.2 / MTE / One, 20 %
8.3 / End-term examination: 50%
9
9.1 / Text book /
- Reddy, J. N., An Introduction to the Finite Element Method, McGraw Hill (2001).
9.2 / Other references /
- Bathe, K. J., Finite Element Procedures, Prentice Hall of India (1996).
- Zienkiewicz, O. C., The Finite Element Method, McGraw Hill (2002)
- Rao, S.S., The Finite Element Method in Engineering, Elsevier, 4th edition. 2005.
- Software - Ansys 14.0 .
Mapping of Outcomes vs. Topics
Outcome no. →Syllabus topic↓ / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11
MEC413.A / X / X / X / X
MEC413.A1 / X
MEC413.A2 / X
MEC413.A3 / X / X
MEC413.A4 / X
MEC413.B
MEC413.B1 / X
MEC413.B2 / X
MEC413.B3 / X / X
MEC413.C / X / X / X / X
MEC413.C1 / X
MEC413.C2 / X
MEC413.C3 / X
MEC413.C4 / X
MEC413.C5 / X
MEC413.D / X / X / X
MEC413.D1 / X
MEC413.D2 / X
MEC413.D3 / X
MEC413.E
MEC413.E1 / X
MEC413.E2 / X / X
MEC413.E3 / X