Ciphers and Encryption Worksheet

Caesar Cipher[1] (Transposition Code) SOLUTIONS Recoded 26 Apr 2008

A. Encode/encipher or decode/decipher the messages shown using the transposition code of length 4 given here.

Encode Decode

A / B / C / D / E / F / G / H / I / J / K / L / M / N / O / P / Q / R / S / T / U / V / W / X / Y / Z
W / X / Y / Z / A / B / C / D / E / F / G / H / I / J / K / L / M / N / O / P / Q / R / S / T / U / V

Find ltr→ Look ­

Look ¯ ←Find ltr

¯Encode CROSS THE RUBICON

ynkoo pda nqxeykj

______

Decode­ SDKW IWPD ZQZA

whoa math dude

______

B. Use the Caesar cipher of ciphers with code word CRYPT to encode or decode the messages shown.

A / B / C / D / E / F / G / H / I / J / K / L / M / N / O / P / Q / R / S / T / U / V / W / X / Y / Z
C / D / E / F / G / H / I / J / K / L / M / N / O / P / Q / R / S / T / U / V / W / X / Y / Z / A / B
Q / R / S / T / U / V / W / X / Y / Z / A / B / C / D / E / F / G / H / I / J / K / L / M / N / O / P
W / X / Y / Z / A / B / C / D / E / F / G / H / I / J / K / L / M / N / O / P / Q / R / S / T / U / V
M / N / O / P / Q / R / S / T / U / V / W / X / Y / Z / A / B / C / D / E / F / G / H / I / J / K / L
P / Q / R / S / T / U / V / W / X / Y / Z / A / B / C / D / E / F / G / H / I / J / K / L / M / N / O

¯Encode CROSS THE RUBICON NO DEATH AND TAXES

CRYPT CRY PTCRYPT CR YPTCR YPT CRYPT

ehkeh vxa djdyyac

Encode¯ YONDER DEAD FROM THE NECK UP GRADUATE

aejptt.tams hhky iju jqrm kl sgctqmig

surrender antwon to your right brain

Decode­

UKNDTPTAD PPJSAC VE UAJT HESWV RNMXP

CRYPTCRYP TCRYPT CR YPTC RYPTC RYPTC

Decode­

VXA UCVUNZTV YO ZDV IAOJTU

the internet is not secure

jas::C:\WWW\cs435\CipherWorkSheet-Slant.doc 30 April 2000

Ciphers and Encryption Worksheet

Public Key Encryption[2]

ER Public Keys ES

Apply R’s public key ER ES Apply S’s public key

Sender, DS, S Receiver, R, DR Apply private

¯

M -> DS(M) -> ER(S.DS(M)) --Send--> DR(ER(S.DS(M)))

Attach signature of S S.DS(M) Sender S known

Apply public key of S ES(DS(M)) --> M

With signature:

M → S.DS(M) → ER(S.DS(M)) → DR(ER(S.DS(M))) → S.DS(M) → ES(DS(M)) → M

E and D are inverse functions such that: ED = I = DE = identity

E is public, and D is secret.

Example

User / 1 / 2 / 3 / 4
E¯ / ¯Encode / ABCD1234 / ABCD1234 / ABCD1234 / ABCD1234
D­ / Decode­ / BCDA2134 / CDAB1432 / DABC4321 / DBAC4123

Message, M: BADCAB from User-1 to User-2

Message, M

/

BADCAB

Comment / Operation /

Result

User 1 encodes message with their private key / D1(M) /

User-3 Sees

User 1 adds return address / 1 / User 3 decodes w / private key
Encode w/User 2’s public key / E2(1.D1(M)) / D3(E2(1.D1(M)))
User 2 decodes w / private key / D2(E2(1.D1(M)))
User 2 applies User 1’s public key / E1(______) / User 3 applies 4’s public key
E4(______)

jas::E:\CS101\SocialIssues\Privacy\CipherWorkSheet-Slant.doc 30 April 2000

[1] Based on a talk by Dr. Gordon Pritchett, Babson College, "Cryptology: From Caesar Cipher to Trap Door Functions," R.I.C., 27 February 1985.

Luciano, Dennis M. "Cryptology: From Caesar Ciphers to Public-Key Cryptosystems," The College Mathematics Journal (Jan 1987)

[2] See Martin E. Hellman, "The Mathematics of Public-Key Cryptography," Scientific American, 241, (August 1979), 146-157 (130-139?).