MPM2DPolynomials Review

Addition and Subtraction of Polynomials

  • Only like terms can be added or subtracted.

Simplify:

a)b)

c)d)

e)f)

Addition and Subtraction of Polynomials with Brackets

  • Remove the brackets, then gather like terms. (Make sure to “apply” what is immediately outside the bracket to each term within the brackets)

Simplify:

a)b)

c)d)

Multiplication and Division of Polynomials

  • Multiply or Divide signs and numerical coefficients first.
  • Multiply or Divide variables using exponent rules
  • When multiplying powers with same base, keep the base and add the exponents.
  • When dividing powers with same base, keep the base and subtract the exponents.

Simplify:

a)b)c)

d)e)f)

g)h)i)

j)k)l)

m)n)o)

p)q)r)

Power to a Power

  • For the power terms, when removing brackets, keep the base and multiply the exponents. (Make sure to “apply” the exponent to the numerical coefficient as well as the variables.

Simplify:

a)b)c)d)

e)f)g)h)

i)j)k)l)

Simplify:

a)b)c)

Substitute and Evaluate

  • Using the values for the variables given, evaluate the expressions

Evaluate if x = -2 , y = -1 and z = 3

a)b)c)

d)e)f)

Monomials times Polynomials

  • Remove the brackets using the distributive property. (Make sure to multiply each term within the brackets by what is immediately outside the brackets)

Simplify:

a)b)c)d)

e)f)

g)h)

i)j)

Common Factoring

  • Removing the Greatest Common Factor (GCF) of both the numerical coefficients and the variable portions of the expression

Factor:

a)b)c)

d)e)f)

g)h)i)

j)k)l)

m)n)o)

p)q) r)

s)t)u)

Difference of Squares

  • Two terms that are each perfect squares (ie: same thing x same thing) with a minus sign between

Factor:

a)b)c)

d)e)f)

g)h)i)

j)k)l)

m)n)o)

p)q)r)

s)t)u)

v)w)x)

y)z)aa)

Simple Trinomials

Factor:

a)b)c)

d)e)f)

g)h)i)

j)k)l)

m)n)o)

p)q)r)

s)t)u)

v)w)x)

y)z)aa)

bb)cc)dd)

Complex Trinomials

Factor:

a)b)c)

d)e)f)

g)h)i)

j)k)l)

m)n)o)

Page 1 of 7