Supplementary materials of

Unique characteristics of algal dissolved organic matter and their association with membrane fouling behavior: A review

Journal:Environmental Science and Pollution Research

Authors:Ly Quang Viet, Tahir Maqbool, and Jin Hur

Corresponding author: Jin Hur; Department of Environment & Energy, Sejong University, Seoul 143-747, South Korea; E-mail:

Table S1. Summary of EEM-PARAFAC components found in algal DOM

Algal species / EEM-PARAFAC / EEM / References
Component / Ex/Em maxima
(nm) / Rel. abundance (%) / Assignment / Traditional classification
M. aeruginosa / C1 / 220/340 / Tryptophan-like / T2 / (Xu et al. 2013)
C2 / 280/340 / Tryptophan-like / T1
C3 / (200, 220, 270)/296 / Tyrosine-like / B
C4 / (250, 340)/438 / microbial fulvic-like / A, C1
Cyanobacteria / C1 / (200, 280)/300 / tyrosine-like / B / (Xu and Jiang 2013)
(unknown species) / C2 and C3 / (220-230,280-290)/(320-340) / tryptophan-like / T1, T2
C4 / (220, 320)/380 / terrestrial (and/or marine) humic-like / A, C1, (M)
M. aeruginosa / C1 / 275/330 / Tryptophan-like / T1 / (Yu et al. 2014)
C2 / (270, 330)/415 / microbial fulvic-like / A, C1
C3 / (260, 360)/440 / terrestrial humic-like / A, C2
C4 / (250, 290)/360 / Tryptophan-like / T1, T2
S. acutus / C1 / (255, 340)/455 / ~21 / microbial fulvic-like / A, C1 / (McIntyre and Guéguen 2013)
(Green algae) / C2 / 275/340 / 28.8 / Tryptophan-like / T1
C3 / (<250, 300)/465 / 49.9 / Marine and terrestrial humic-like / A, M, (C1)
M. aeruginosa / C1 / (255, 275, 360)/455 / 19.5 / terrestrial humic-like / A, C2, (C1) / (Ou et al. 2014)
C2 / 285/495 / 6.9 / microbial fulvic-like / A, (C1)
C3 / (220, 245)/400 / 7.3 / terrestrial (and marine) humic-like / A, (M)
C4 / (230, 280)/330 / 66.3 / biological tyrosine-, tryptophan-like / B, T2, (T1)

Table S2. Main characteristics of the FT-IR spectra of humic substances (Rodríguez and Núñez 2011) and algal DOM (Villacorte et al. 2015)

Humic substances / Algal DOM
Wavelength
(cm-1) / Functional groups / Assignment / Wavelength (cm-1) / Functional groups / Assignment
3400 / O-H stretch / alcohols, phenols, carboxylic groups / 3400-3300 / O-H stretch / polysaccharides
2960-2850 / C-H stretch / CH3, CH2 / 2950-2850 / C-H stretch / CH3, CH2 related to lipids
2620 / O-H stretch / hydrogen-bonded carboxylic groups / 1650-1640 / C-O stretch&C-N (amide I) / proteins
1720 / C=O stretch / carboxylic groups / 1545-1540 / C-N stretch& N-H bend (amide II) / proteins
1630 / C=C stretch / alkenes and aromatic rings / 1280-1200 / C-O stretch&O-H deformation of COOH / polysaccharides
1540 / N-H bend / N-H structures / 1080-1070 / C-H aromatic / humic substances-like
1455 / C-H bend / CH3, CH2 / 1050 / -S=O stretch / Sugar ester sulphates
1410 / O-H bend / carboxylic groups
1375 / C-H bend / CH3
1260-1220 / C-O stretch &
O-H deformation of COOH / carboxylic groups, phenols, aromatic/unsaturated ethers
1095-1030 / C-O stretch / alcohols, aliphatic ethers
805 / C-H bend / tri- and tetra-substituted aromatic rings

Table S3. FT-ICR-MS characterization of EOM (Bittar et al. 2015) versus AOM and non-bloom freshwater DOM (Zhang et al. 2014)

EOM / AOM / Non bloom
#Formula / 134 / 844** / 3651**
Median mass / 348
Median AImod / 0 (0.08)
CHO (%) / 45.5 / 48 / 28.4
CHON (%) / 29.1 / 27.1 / 32.7
CHONS (%) / 12.4 / 12.5
CHOSP (%) / 25.3
Aromatics (%) / 3
Mod. Unsaturated (%) / 8
Unsat. Aliphatics (%) / 50
Sat. fatty acids (%) / 17
peptide-like (%) / 21
Sugars (%) / 1
H/C ratio* / 1.56 / 1.08
O/C ratio* / 0.28 / 0.43
N/C ratio* / 28.8 / 21.9
S/C ratio* / 90.9 / 49.7
* Average ratios from FTICR mass peaks
** Total number of mass peaks attributed to CHO, CHOS, CHNO and CHNOS compositions

Figure S1. Van Krevelen diagram for DOM ((Kim et al. 2003; Ohno et al. 2010)

References

Bittar TB, Vieira AAH, Stubbins A, Mopper K (2015) Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnology and Oceanography 60:1172-1194.

Kim S, Kramer RW, Hatcher PG (2003) Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram. Analytical Chemistry 75:5336-5344.

McIntyre AM, Guéguen C (2013) Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 90:620-626.

Ohno T, He Z, Sleighter RL, Honeycutt CW, Hatcher PG (2010) Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil- and Plant Biomass-Derived Organic Matter Fractions. Environmental Science & Technology 44:8594-8600.

Ou H-S, Wei C-H, Deng Y, Gao N-Y (2014) Integrated Principal Component Analysis of Microcystis aeruginosa Dissolved Organic Matter and Assessment of UV-C Pre-Treatment on Cyanobacteria-Containing Water. CLEAN – Soil, Air, Water 42:442-448.

Rodríguez FJ, Núñez LA (2011) Characterization of aquatic humic substances. Water and Environment Journal 25:163-170.

Villacorte LO et al. (2015) Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res 73:216-230.

Xu H, Cai H, Yu G, Jiang H (2013) Insights into extracellular polymeric substances ofcyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res 47:2005-2014.

Xu H, Jiang H (2013) UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial bloomsina eutrophic freshwater lake. Water Res 47:6506-6515.

Yu H et al. (2014) Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination 337:67-75.

Zhang F et al. (2014) Molecular and structural characterization of dissolved organic matter during and post cyanobacterial bloom in Taihu by combination of NMR spectroscopy and FTICR mass spectrometry. Water Res 57:280-294.

1