Supplemental Material for “Accurate Gaseous Ion Mobility Measurements” by L. A. Viehland (Chatham University; ), A. Lutfullaeva, J. Dashdorj and R. Johnsen

Zero-field standard mobilities (K0(0) in cm2/Vs) and standard mobilities (K0 in cm2/Vs) at the limiting value of the reduced field strength (E/N in Td) given by Eq. (5) of the text, for state-specific atomic ions in naturally-occurring rare gases and 222Rn. The theoretical references are cited by numbers; experimental values are given only if the claimed accuracy is ±2% or better and E/N is below the tabulated value, and they are referencedby letters. The semi-classicalvalues for He+ in He at 300.00 K are corrected to the quantum values, as discussed in the text; the values at 400.00 K are not corrected.

300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
107Ag-(1S0) / He / 13.600 / 1.42 / 1.0002 / 12.842 / [34]
Ne / 6.8652 / 2.63 / 1.0009 / 6.4906 / [34]
Ar / 2.8469 / 5.90 / 0.9984 / 2.9932 / [34]
107Ag+(1S0) / He / 17.516 / 17.2 / 1.10 / 0.9998 / 18.510 / [13] / [H]
Ne / 5.5425 / 3.26 / 0.9996 / 5.7359 / [13]
Ar / 2.0399 / 8.25 / 1.0004 / 2.0158 / [13]
Kr / 1.3132 / 11.3 / 1.0006 / 1.2973 / [13]
Xe / 0.9322 / 14.2 / 1.0009 / 0.9212 / [13]
Rn / 0.7598 / 14.8 / 1.0010 / 0.7520 / [13]
107Ag+(3S1) / He / 24.248 / 0.80 / 1.0000 / 23.849 / [34]
Ne / 6.4863 / 2.78 / 0.9985 / 6.8756 / [34]
Ar / 1.9773 / 8.50 / 1.0005 / 1.9443 / [34]
27Al+(1S0) / He / 21.882 / 1.67 / 1.0003 / 21.221 / [26]
Ne / 8.4904 / 3.49 / 0.9978 / 8.7832 / [26]
Ar / 2.7581 / 9.03 / 0.9985 / 2.8287 / [26]
Kr / 2.0370 / 9.47 / 1.0012 / 2.0258 / [26]
Xe / 1.5455 / 10.5 / 1.0022 / 1.5202 / [26]
Rn / 1.3319 / 9.68 / 1.0019 / 1.3139 / [26]
27Al3+(1S0) / He / 16.873 / 2.16 / 1.0001 / 16.813 / [3]
Ne / 6.9598 / 4.26 / 1.0006 / 6.8591 / [19]
40Ar+(2P3/2) / He / 20.603 / 1.49 / 0.9999 / 20.626 / [22]
Ne / 6.8179 / 3.85 / 0.9985 / 7.0757 / [24]
40Ar+(2P1/2) / He / 20.979 / 1.49 / 0.9999 / 21.355 / [22]
Ne / 7.0710 / 3.71 / 0.9985 / 7.3172 / [24]
40Ar+(2P) / He / 20.850 / 1.47 / 0.9998 / 21.105 / [22]
Ne / 6.9030 / 3.80 / 0.9985 / 7.1556 / [24]
197Au-(1S0) / He / 15.597 / 0.92 / 1.0001 / 14.560 / [34]
Ne / 6.5527 / 2.11 / 1.0003 / 6.2584 / [34]
Ar / 2.2617 / 5.85 / 0.9989 / 2.4119 / [34]
197Au+(1S0) / He / 17.182 / 0.84 / 0.9999 / 18.267 / [13]
Ne / 5.1946 / 2.66 / 0.9998 / 5.3691 / [13]
Ar / 1.8796 / 7.05 / 1.0003 / 1.8474 / [13]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
Kr / 1.1694 / 10.4 / 1.0005 / 1.1512 / [13]
Xe / 0.8108 / 13.9 / 1.0006 / 0.7994 / [13]
Rn / 0.6372 / 15.6 / 1.0009 / 0.6295 / [13]
197Au+(3S1) / He / 20.360 / 0.71 / 1.0000 / 20.991 / [34]
Ne / 5.1887 / 2.66 / 0.9996 / 5.4565 / [34]
Ar / 1.7976 / 7.36 / 1.0002 / 1.7726 / [34]
11B+(1S0) / He / 25.746 / 2.04 / 0.9990 / 26.364 / [31]
Ne / 10.135 / 3.60 / 0.9934 / 10.829 / [31]
Ar / 3.6828 / 7.74 / 1.0009 / 3.6612 / [31]
Kr / 2.8387 / 7.37 / 1.0012 / 2.8131 / [31]
Xe / 2.2156 / 7.68 / 1.0014 / 2.1937 / [31]
Rn / 1.9783 / 6.74 / 1.0012 / 1.9593 / [31]
138Ba+(2S1/2) / He / 16.976 / 1.01 / 1.0001 / 16.320 / [20]
Ne / 8.3917 / 1.93 / 1.0003 / 8.0850 / [20]
Ar / 1.8895 / 8.12 / 0.9987 / 2.0091 / [20]
Kr / 1.1184 / 12.2 / 0.9995 / 1.1416 / [20]
Xe / 0.7888 / 15.8 / 1.0007 / 0.7831 / [20]
Rn / 0.6371 / 16.8 / 1.0015 / 0.6288 / [20]
138Ba2+(1S0) / He / 18.055 / 0.95 / 0.9999 / 18.953 / [20]
Ne / 5.7154 / 2.84 / 0.9998 / 5.8208 / [20]
Ar / 2.0664 / 7.40 / 1.0000 / 2.0670 / [20]
Kr / 1.2922 / 10.5 / 1.0000 / 1.2908 / [20]
Xe / 0.8990 / 14.3 / 0.9995 / 0.8959 / [20]
Rn / 0.7152 / 15.7 / 0.9993 / 0.7134 / [20]
9Be+(2S1/2) / He / 31.664 / 1.78 / 0.9984 / 32.833 / [25]
Ne / 12.762 / 2.95 / 0.9853 / 14.500 / [25]
Ar / 3.8642 / 7.53 / 1.0017 / 3.8143 / [25]
Kr / 3.0505 / 6.93 / 1.0017 / 3.0107 / [25]
Xe / 2.4093 / 7.23 / 1.0013 / 2.3786 / [25]
Rn / 2.1594 / 6.20 / 1.0015 / 2.1331 / [25]
9Be2+(1S0) / He / 18.577 / 3.04 / 1.0002 / 18.469 / [25]
Ne / 9.0247 / 4.18 / 1.0005 / 8.9829 / [25]
Ar / 4.1482 / 7.02 / 1.0005 / 4.1231 / [25]
79Br-(1S0) / He / 17.741 / 1.26 / 1.0003 / 16.545 / [16]
Ne / 6.9157 / 2.96 / 1.0005 / 6.6971 / [16]
Ar / 2.3673 / 2.32 / 7.88 / 0.9978 / 2.5001 / [16] / [C]
Kr / 1.4552 / 1.47 / 11.0 / 0.9970 / 1.5238 / [16] / [C]
Xe / 1.0039 / 0.99 / 14.0 / 0.9983 / 1.0286 / [16] / [C]
Rn / 0.8263 / 14.2 / 0.9990 / 0.8363 / [16]
79Br+(3P0) / He / 19.510 / 1.15 / 1.0001 / 19.107 / [21]
Ne / 6.8397 / 2.99 / 0.9996 / 6.8924 / [21]
Ar / 2.3365 / 8.02 / 0.9988 / 2.4133 / [21]
79Br+(3P1) / He / 19.416 / 1.15 / 1.0000 / 19.082 / [21]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
Ne / 6.3898 / 3.20 / 0.9994 / 6.5415 / [21]
Ar / 2.2037 / 8.48 / 0.9998 / 2.2226 / [21]
79Br+(3P2) / He / 19.631 / 1.14 / 1.0001 / 19.391 / [21]
Ne / 6.3638 / 3.22 / 0.9992 / 6.5683 / [21]
Ar / 2.1110 / 8.87 / 1.0003 / 2.1048 / [21]
12C+(2P3/2) / He / 22.903 / 2.22 / 0.9990 / 23.726 / [33]
Ne / 9.2613 / 3.87 / 0.9976 / 9.5103 / [33]
Ar / 3.7621 / 7.58 / 0.9989 / 3.8065 / [33]
Kr / 2.8239 / 7.37 / 1.0000 / 2.8269 / [33]
Xe / 2.1741 / 7.82 / 1.0012 / 2.1531 / [33]
12C+(2P1/2) / He / 21.410 / 2.38 / 0.9980 / 23.060 / [33]
Ne / 8.1715 / 4.39 / 0.9989 / 8.3261 / [33]
Ar / 3.6060 / 7.84 / 1.0016 / 3.5571 / [33]
Kr / 2.8012 / 7.43 / 1.0015 / 2.7669 / [33]
Xe / 2.1942 / 7.75 / 1.0014 / 2.1679 / [33]
12C+(2P) / He / 22.382 / 2.27 / 0.9986 / 23.498 / [33]
Ne / 8.8681 / 4.05 / 0.9980 / 9.0813 / [33]
Ar / 3.7076 / 7.67 / 0.9999 / 3.7178 / [33]
Kr / 2.8161 / 7.39 / 1.0005 / 2.8064 / [33]
Xe / 2.1808 / 7.80 / 1.0012 / 2.1578 / [33]
12C+(4P5/2) / He / 26.593 / 1.91 / 0.9992 / 27.155 / [33]
12C+(4P3/2) / He / 20.042 / 2.54 / 1.0003 / 19.724 / [33]
12C+(4P1/2) / He / 16.381 / 3.11 / 1.0010 / 15.777 / [33]
12C+(4P) / He / 21.924 / 2.32 / 1.0000 / 21.796 / [33]
40Ca+(2S1/2) / He / 20.022 / 1.53 / 1.0004 / 19.117 / [23]
Ne / 9.5161 / 2.76 / 0.9995 / 9.5336 / [23]
Ar / 2.4467 / 9.32 / 0.9962 / 2.5996 / [23]
Kr / 1.6272 / 11.3 / 0.9991 / 1.6540 / [23]
Xe / 1.2123 / 12.8 / 1.0012 / 1.2039 / [23]
Rn / 1.0660 / 11.8 / 1.0020 / 1.0518 / [23]
40Ca2+(1S0) / He / 18.824 / 1.63 / 0.9998 / 19.458 / [23]
Ne / 6.4154 / 4.09 / 0.9999 / 6.4366 / [23]
Ar / 2.7591 / 8.26 / 1.0009 / 2.7244 / [23]
Kr / 1.7792 / 10.3 / 0.9999 / 1.7770 / [23]
Xe / 1.3190 / 11.8 / 0.9996 / 1.3212 / [23]
Rn / 1.1207 / 11.2 / 0.9999 / 1.1205 / [23]
114Cd+(2S1/2) / He / 21.614 / 21.6 / 0.87 / 1.0000 / 21.242 / [8] / [H]
Ne / 6.5105 / 2.70 / 0.9992 / 6.8022 / [8]
Ar / 1.9701 / 8.35 / 1.0001 / 1.9724 / [8]
Kr / 1.2578 / 11.5 / 1.0006 / 1.2451 / [8]
Xe / 0.8931 / 14.6 / 1.0009 / 0.8828 / [8]
Rn / 0.7244 / 15.3 / 1.0011 / 0.7162 / [8]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
35Cl-(1S0) / He / 20.001 / 1.63 / 1.0005 / 18.750 / [27]
Ne / 8.1570 / 8.20 / 3.36 / 1.0005 / 7.9895 / [27] / [B]
Ar / 2.8194 / 2.81 / 8.30 / 0.9958 / 2.9870 / [27] / [B]
Kr / 1.8676 / 1.86 / 10.0 / 0.9950 / 1.9536 / [27] / [B]
Xe / 1.3446 / 1.34 / 11.7 / 0.9982 / 1.3727 / [27] / [B]
Rn / 1.1509 / 11.0 / 0.9994 / 1.1618 / [27]
133Cs+(1S0) / He / 18.202 / 0.96 / 1.0001 / 17.539 / [5]
Ne / 6.1066 / 6.00 / 2.70 / 0.9998 / 6.1443 / [5] / [B]
Ar / 2.1318 / 2.11 / 7.27 / 0.9994 / 2.1956 / [5] / [B]
Kr / 1.3053 / 1.30 / 10.6 / 0.9991 / 1.3378 / [5] / [B]
Xe / 0.9018 / 0.89 / 14.0 / 1.0000 / 0.9008 / [5] / [B]
Rn / 0.7182 / 15.2 / 0.9995 / 0.7240 / [5]
63Cu-(1S0) / He / 14.186 / 1.75 / 1.0003 / 13.423 / [34]
Ne / 7.4986 / 2.98 / 1.0014 / 7.0872 / [34]
Ar / 3.2650 / 6.15 / 0.9971 / 3.4301 / [34]
63Cu+(1S0) / He / 16.094 / 1.55 / 0.9998 / 16.893 / [13]
Ne / 5.7854 / 3.86 / 0.9994 / 5.9534 / [13]
Ar / 2.2300 / 9.01 / 1.0005 / 2.2044 / [13]
Kr / 1.5021 / 11.2 / 1.0009 / 1.4857 / [13]
Xe / 1.0987 / 13.3 / 1.0012 / 1.0855 / [13]
Rn / 0.9243 / 13.2 / 1.0014 / 0.9140 / [13]
63Cu+(3S1) / He / 25.578 / 0.97 / 0.9999 / 25.569 / [34]
Ne / 6.8093 / 3.28 / 0.9981 / 7.2865 / [34]
Ar / 2.1765 / 9.22 / 1.0007 / 2.1490 / [34]
153Eu+(9S0) / He / 18.238 / 18.4 / 0.89 / 1.0001 / 17.410 / [32] / [J]
Ne / 7.9596 / 1.94 / 0.9999 / 7.8975 / [32]
Ar / 1.8745 / 1.84 / 7.82 / 0.9990 / 1.9865 / [32] / [J]
Kr / 1.1162 / 11.9 / 0.9998 / 1.1338 / [32]
Xe / 0.7818 / 15.4 / 1.0007 / 0.7754 / [32]
153Eu2+(8S7/2) / He / 17.443 / 0.93 / 0.9999 / 18.157 / [29]
Ne / 5.6179 / 2.75 / 0.9999 / 5.6786 / [29]
Ar / 2.0285 / 7.23 / 1.0000 / 2.0295 / [29]
Kr / 1.2519 / 10.6 / 1.0000 / 1.2522 / [29]
Xe / 0.8591 / 14.1 / 1.0000 / 0.8588 / [29]
153Eu3+(7F0) / He / 16.496 / 0.99 / 1.0000 / 16.534 / [29]
Ne / 5.5468 / 2.79 / 1.0000 / 5.5463 / [29]
Ar / 2.0148 / 7.00 / 1.0002 / 2.0153 / [29]
19F-(1S0) / He / 27.636 / 1.54 / 1.0005 / 26.692 / [10]
Ne / 10.486 / 3.10 / 0.9976 / 10.757 / [10]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
Ar / 3.2605 / 8.14 / 0.9948 / 3.4447 / [10]
Kr / 2.3003 / 2.30 / 8.74 / 0.9977 / 2.3577 / [10] / [B]
Xe / 1.7202 / 9.67 / 1.0000 / 1.7235 / [10]
Rn / 1.5051 / 8.72 / 1.0002 / 1.5036 / [10]
223Fr+(1S0) / He / 17.512 / 0.77 / 1.0001 / 16.771 / [5]
Ne / 5.8257 / 2.24 / 0.9999 / 5.8314 / [5]
Ar / 1.9904 / 6.31 / 0.9996 / 2.0538 / [5]
Kr / 1.1875 / 9.79 / 0.9995 / 1.2158 / [5]
Xe / 0.7961 / 13.6 / 0.9997 / 0.8066 / [5]
Rn / 0.6123 / 15.8 / 0.9997 / 0.6177 / [5]
69Ga+(1S0) / He / 21.122 / 1.13 / 1.0000 / 20.719 / [28]
Ne / 6.9553 / 3.10 / 0.9989 / 7.2343 / [28]
Ar / 2.2138 / 8.83 / 0.9995 / 2.2568 / [28]
Kr / 1.4493 / 11.4 / 1.0003 / 1.4488 / [28]
Xe / 1.0495 / 13.8 / 1.0008 / 1.0406 / [28]
Rn / 0.8786 / 13.6 / 1.0011 / 0.8703 / [28]
4He+(2S1/2) / He / 10.398 / 10.3 / 10.4 / 1.0028 / 10.136 / [35] / [A]
Ne / 16.608 / 16.7 / 16.6 / 0.9931 / 17.559 / [18] / [D]
Ar / 5.4691 / 5.49 / 0.9980 / 5.6345 / [29]
202Hg+(2S1/2) / He / 20.009 / 0.71 / 1.0000 / 19.938 / [8]
Ne / 5.7430 / 2.38 / 0.9997 / 5.9819 / [8]
Ar / 1.8510 / 7.08 / 1.0002 / 1.8374 / [8]
Kr / 1.2003 / 10.0 / 1.0008 / 1.1731 / [8]
Xe / 0.8475 / 13.2 / 1.0011 / 0.8285 / [8]
Rn / 0.6203 / 15.9 / 1.0008 / 0.6131 / [8]
127I-(1S0) / He / 16.562 / 1.16 / 1.0002 / 15.341 / [6]
Ne / 7.1506 / 2.75 / 1.0005 / 6.7021 / [6]
Ar / 2.9352 / 7.27 / 0.9985 / 3.0249 / [6]
127I+(3P2) / He / 17.887 / 0.99 / 1.0001 / 17.211 / [6]
Ne / 6.0561 / 2.77 / 0.9998 / 6.0989 / [6]
Ar / 2.0363 / 7.74 / 0.9995 / 2.0829 / [6]
115In+(1S0) / He / 19.584 / 0.95 / 1.0001 / 18.948 / [28]
Ne / 6.4519 / 2.72 / 0.9995 / 6.6194 / [28]
Ar / 2.0405 / 8.03 / 0.9995 / 2.0911 / [28]
Kr / 1.2733 / 11.3 / 1.0000 / 1.2796 / [28]
Xe / 0.8989 / 14.5 / 1.0006 / 0.8918 / [28]
Rn / 0.7314 / 15.2 / 1.0011 / 0.7238 / [28]
39K+(1S0) / He / 21.261 / 21.2 / 1.46 / 0.9998 / 21.388 / [4] / [F]
Ne / 7.3518 / 7.45 / 3.60 / 0.9984 / 7.6306 / [4] / [A]
Ar / 2.6777 / 2.66 / 8.58 / 0.9980 / 2.7682 / [4] / [E]
Kr / 1.8251 / 1.83 / 10.2 / 0.9979 / 1.8638 / [4] / [B]
Xe / 1.3489 / 1.35 / 11.7 / 0.9993 / 1.3598 / [4] / [B]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
Rn / 1.1429 / 11.2 / 0.9981 / 1.1467 / [4]
84Kr+(2P3/2) / He / 19.493 / 1.11 / 1.0000 / 19.334 / [22]
Ne / 6.3333 / 3.25 / 0.9993 / 6.5109 / [24]
84Kr+(2P1/2) / He / 19.496 / 1.11 / 1.0000 / 19.201 / [22]
Ne / 6.3805 / 3.13 / 0.9994 / 6.5451 / [24]
84Kr+(2P) / He / 19.492 / 1.11 / 1.0000 / 19.287 / [22]
Ne / 6.3487 / 3.21 / 0.9993 / 6.5215 / [24]
7Li+(1S0) / He / 22.816 / 23.1 / 2.69 / 0.9969 / 24.561 / [1] / [A]
Ne / 10.566 / 10.7 / 3.70 / 0.9955 / 11.045 / [1] / [A]
Ar / 4.6177 / 4.62 / 6.44 / 1.0001 / 4.6201 / [1] / [A]
Kr / 3.5696 / 6.01 / 1.0002 / 3.5629 / [1]
Xe / 2.7826 / 6.27 / 1.0000 / 2.7697 / [1]
Rn / 2.4521 / 5.55 / 1.0004 / 2.4378 / [1]
175Lu+(1S0) / He / 16.577 / 16.7 / 0.92 / 1.0001 / 15.617 / [32] / [I]
Ne / 6.5253 / 2.37 / 0.9999 / 6.5008 / [32]
Ar / 1.9866 / 6.99 / 0.9990 / 2.1113 / [32]
Kr / 1.1149 / 11.4 / 0.9995 / 1.1426 / [32]
Xe / 0.7595 / 15.3 / 1.0008 / 0.7535 / [32]
24Mg+(2S1/2) / He / 24.587 / 1.57 / 1.0003 / 23.865 / [37]
Ne / 10.166 / 3.04 / 0.9961 / 10.708 / [25]
Ar / 2.7372 / 9.63 / 0.9981 / 2.7864 / [25]
Kr / 2.0111 / 10.2 / 0.9998 / 1.9970 / [25]
Xe / 1.5121 / 11.4 / 0.9988 / 1.5036 / [25]
Rn / 1.2289 / 10.6 / 0.9982 / 1.2427 / [25]
24Mg2+(1S0) / He / 17.271 / 2.23 / 1.0000 / 17.272 / [25]
Ne / 6.9726 / 4.39 / 1.0000 / 6.9668 / [25]
Ar / 2.8338 / 8.99 / 0.9995 / 2.8455 / [25]
Kr / 2.2075 / 8.89 / 0.9998 / 2.2071 / [25]
Xe / 1.6441 / 9.15 / 1.0010 / 1.6372 / [25]
Rn / 1.5755 / 8.24 / 0.9996 / 1.5740 / [25]
23Na+(1S0) / He / 22.364 / 22.8 / 1.75 / 0.9991 / 23.673 / [2] / [A]
Ne / 8.0882 / 8.25 / 3.83 / 0.9963 / 8.5929 / [2] / [A]
Ar / 3.0443 / 3.08 / 8.43 / 0.9988 / 3.0981 / [2] / [A]
Kr / 2.1861 / 2.20 / 9.05 / 0.9995 / 2.2011 / [2] / [C]
Xe / 1.6495 / 10.0 / 1.0000 / 1.6495 / [2]
Rn / 1.3990 / 9.30 / 1.0000 / 1.4010 / [2]
20Ne+(2P3/2) / He / 19.786 / 2.11 / 0.9997 / 20.011 / [18]
20Ne+(2P1/2) / He / 21.321 / 1.95 / 0.9991 / 22.399 / [18]
20Ne+(2P) / He / 20.273 / 20.3 / 2.06 / 0.9996 / 20.749 / [18] / [B]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
16O-(2P3/2) / He / 28.004 / 1.63 / 1.0010 / 26.645 / [7]
16O-(2P1/2) / He / 25.099 / 1.81 / 1.0012 / 22.613 / [7]
16O-(2P) / He / 26.963 / 1.69 / 1.0010 / 25.551 / [7]
16O+(4S3/2) / He / 22.825 / 2.00 / 0.9987 / 24.173 / [9]
Ne / 8.3462 / 4.06 / 0.9958 / 8.8227 / [14]
Ar / 3.3455 / 3.35 / 8.19 / 1.0005 / 3.3244 / [17] / [G]
226Ra+(2S1/2) / He / 15.806 / 0.85 / 1.0001 / 14.926 / [23]
Ne / 7.0425 / 1.84 / 1.0002 / 6.7965 / [23]
Ar / 1.9604 / 6.40 / 0.9992 / 2.0923 / [23]
Kr / 1.0876 / 10.7 / 0.9991 / 1.1275 / [23]
Xe / 0.7311 / 14.9 / 1.0000 / 0.7338 / [23]
Rn / 0.5711 / 17.2 / 1.0008 / 0.5658 / [23]
226Ra2+(1S0) / He / 18.240 / 0.74 / 0.9999 / 19.195 / [23]
Ne / 5.6012 / 2.32 / 0.9999 / 5.7252 / [23]
Ar / 1.9818 / 6.32 / 1.0000 / 1.9813 / [23]
Kr / 1.1947 / 9.83 / 1.0000 / 1.1934 / [23]
Xe / 0.8077 / 13.5 / 0.9999 / 0.8058 / [23]
Rn / 0.6219 / 16.0 / 1.0000 / 0.6211 / [23]
85Rb+(1S0) / He / 19.756 / 1.98 / 1.0001 / 19.437 / [5]
Ne / 6.5450 / 6.50 / 4.73 / 0.9986 / 6.6943 / [5] / [A]
Ar / 2.3145 / 2.26 / 11.4 / 0.9976 / 2.3736 / [5] / [A]
Kr / 1.4559 / 1.45 / 13.6 / 0.9979 / 1.4915 / [5] / [B]
Xe / 1.0257 / 1.02 / 16.1 / 0.9992 / 1.0382 / [5] / [B]
Rn / 0.8337 / 15.6 / 0.9988 / 0.841 / [5]
222Rn+(2P3/2) / He / 17.373 / 0.78 / 1.0001 / 16.622 / [22]
Ne / 5.7231 / 2.28 / 0.9999 / 5.7422 / [24]
Ar / 1.9438 / 6.50 / 0.9998 / 1.9777 / [24]
Kr / 1.1709 / 10.0 / 0.9999 / 1.1768 / [24]
Xe / 0.8038 / 13.6 / 0.9996 / 0.8033 / [24]
222Rn+(2P1/2) / He / 17.304 / 0.78 / 1.0002 / 16.610 / [22]
Ne / 5.7758 / 2.28 / 0.9999 / 5.7906 / [24]
Ar / 1.9400 / 6.50 / 0.9997 / 1.9887 / [24]
Kr / 1.1490 / 10.0 / 0.9999 / 1.1567 / [24]
Xe / 0.7867 / 13.6 / 0.9996 / 0.7786 / [24]
222Rn+(2P) / He / 17.324 / 0.78 / 1.0000 / 16.612 / [22]
Ne / 5.7404 / 2.28 / 0.9999 / 5.7579 / [24]
Ar / 1.9423 / 6.49 / 0.9998 / 1.9813 / [24]
Kr / 1.1636 / 10.0 / 0.9999 / 1.1701 / [24]
Xe / 0.7986 / 13.8 / 0.9997 / 0.7955 / [24]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
32S-(2P3/2) / He / 19.468 / 2.34 / 1.0013 / 18.163 / [12]
32S-(2P1/2) / He / 17.433 / 2.61 / 1.0013 / 16.222 / [12]
32S-(2P) / He / 18.738 / 2.43 / 1.0013 / 17.466 / [12]
28Si+(2P3/2) / He / 19.613 / 2.60 / 1.0002 / 19.353 / [36]
Ne / 7.3849 / 4.86 / 0.9985 / 7.5112 / [36]
Ar / 2.8412 / 9.94 / 0.9984 / 2.8795 / [36]
28Si+(2P1/2) / He / 22.904 / 2.22 / 0.9987 / 23.363 / [36]
Ne / 7.1405 / 5.03 / 0.9952 / 7.5524 / [36]
Ar / 2.6272 / 10.8 / 1.0017 / 2.5913 / [36]
28Si+(2P) / He / 20.601 / 2.47 / 0.9999 / 20.527 / [36]
Ne / 7.3017 / 4.92 / 0.9975 / 7.5255 / [36]
Ar / 2.7655 / 10.2 / 0.9995 / 2.7758 / [36]
88Sr+(2S1/2) / He / 18.123 / 1.17 / 1.0002 / 17.273 / [23]
Ne / 8.4432 / 2.32 / 1.0000 / 8.3325 / [23]
Ar / 2.0950 / 8.60 / 0.9978 / 2.2415 / [23]
Kr / 1.2733 / 9.25 / 0.9957 / 1.3061 / [23]
Xe / 0.9200 / 15.1 / 1.0007 / 0.9144 / [23]
Rn / 0.7780 / 15.2 / 1.0011 / 0.7662 / [23]
88Sr2+(1S0) / He / 17.439 / 1.22 / 0.9999 / 18.087 / [23]
Ne / 5.8473 / 3.35 / 0.9999 / 5.8946 / [23]
Ar / 2.1933 / 8.22 / 1.0000 / 2.1912 / [23]
Kr / 1.4111 / 11.0 / 1.0000 / 1.4095 / [23]
Xe / 1.0043 / 13.8 / 1.0000 / 1.0020 / [23]
Rn / 0.8248 / 14.0 / 1.0000 / 0.8249 / [23]
205Tl+(1S0) / He / 18.991 / 0.74 / 1.0000 / 18.516 / [11]
Ne / 5.9262 / 2.29 / 0.9997 / 6.0862 / [11]
Ar / 1.9175 / 6.81 / 0.9998 / 1.9526 / [11]
Kr / 1.1599 / 10.4 / 1.0000 / 1.1622 / [11]
Xe / 0.8081 / 14.2 / 1.0003 / 0.7983 / [11]
238U+(4I9/2) / He / 14.671 / 0.96 / 1.0001 / 13.735 / [30]
Ne / 6.1562 / 2.20 / 1.0001 / 6.0066 / [30]
Ar / 2.0334 / 6.40 / 0.9990 / 2.1787 / [30]
Kr / 1.0819 / 11.1 / 0.9989 / 1.1310 / [30]
Xe / 0.7015 / 15.8 / 1.0002 / 0.7045 / [30]
132Xe+(2P3/2) / He / 17.961 / 0.97 / 1.0000 / 17.366 / [24]
Ne / 5.9721 / 2.76 / 0.9998 / 6.0313 / [24]
Ar / 2.0462 / 7.59 / 0.9997 / 2.0736 / [24]
Kr / 1.2852 / 10.8 / 0.9998 / 1.2925 / [24]
132Xe+(2P1/2) / He / 18.000 / 0.97 / 1.0001 / 17.334 / [24]
Ne / 6.0184 / 2.74 / 0.9998 / 6.0683 / [24]
Ar / 2.0448 / 7.60 / 0.9996 / 2.0902 / [24]
Kr / 1.2670 / 10.9 / 1.0001 / 1.2679 / [24]
300.00 K / 400.00 K
Ion / Gas / K0(0) / E/N / Ratio / K0(0) / References
Theory / Expt. / K0(0)/K0 / Theory / Theory / Expt.
132Xe+(2P) / He / 17.974 / 0.97 / 1.0003 / 17.354 / [24]
Ne / 5.9870 / 2.76 / 0.9998 / 6.0434 / [24]
Ar / 2.0471 / 2.07 / 7.59 / 0.9997 / 2.0806 / [24] / [E]
Kr / 1.2812 / 10.8 / 1.0000 / 1.2896 / [24]
174Yb+(2S1/2) / He / 19.108 / 19.4 / 2.05 / 1.0007 / 18.237 / [32] / [I]
Ne / 7.8609 / 3.94 / 0.9993 / 7.8933 / [32]
Ar / 1.8625 / 1.84 / 13.8 / 0.9972 / 1.9625 / [32] / [J]
Kr / 1.1072 / 17.8 / 0.9998 / 1.1194 / [32]
Xe / 0.7701 / 21.3 / 1.0013 / 0.7629 / [32]
64Zn+(2S1/2) / He / 23.818 / 1.04 / 0.9999 / 23.860 / [15]
Ne / 7.1036 / 3.14 / 0.9982 / 7.5705 / [15]
Ar / 2.1619 / 9.27 / 1.0004 / 2.1478 / [15]
Kr / 1.4691 / 11.4 / 1.0010 / 1.4525 / [15]
Xe / 1.0806 / 13.4 / 1.0011 / 1.0680 / [15]

References

  1. Lozeille J, Winata E, Soldan P, Lee EPF, Viehland LA, Wright TG (2002) Spectroscopy of Li+∙Rg and Li+-Rg transport coefficients (Rg=He-Rn). Phys. Chem. Chem. Phys. 4:3601-3610
  2. Viehland LA, Lozeille J, Soldan P, Lee EPF, Wright TG (2003) Spectroscopy of Na+∙Rg and transport coefficients of Na+ in Rg (Rg=He-Rn). J. Chem. Phys. 119:3729-3736
  3. Wright TG, Lee EPF, Hotokka M, Pyykkö P (2004) Al3+-He: stability and spectroscopy. Chem. Phys. Lett. 392:281-283
  4. Viehland LA, Lozeille J, Soldan P, Lee EPF, Wright TG (2004) Spectroscopy of K+∙Rg and transport coefficients of K+ in Rg (Rg=He-Rn). J. Chem. Phys. 121:341-35
  5. Hickling HL, Viehland LA, Shepherd DT, Soldan P, Lee EPF, Wright TG (2004) Spectroscopy of M+∙Rg and transport coefficients of M+ in Rg (M=Rb-Fr, Rg=He-Rn). Phys. Chem. Chem. Phys. 6:4233-4239
  6. Buchachenko AA, Tscherbul TV, Klos J, Szczesniak MM, Chalasinski G, Webb R, Viehland LA (2005) Interaction potentials of the Rg-I anions, neutrals, and cations (Rg=He, Ne, Ar). J. Chem. Phys. 122:194311
  7. Viehland LA, Webb R, Lee EPF, Wright TG (2005), Accurate potential energy curves of HeO-, NeO-, and ArO-: spectroscopy and transport coefficients J. Chem. Phys. 122:114302
  8. Qing E, Viehland LA, Lee EPF, Wright TG (2006) Interaction potentials and spectroscopy of Hg+Rg and Cd+Rg and transport coefficients for Hg+ and Cd+ in Rg (Rg=He-Rn). J. Chem. Phys. 124:044316
  9. Danailov DM, Brothers R, Viehland LA, Johnsen R, Wright TG, Lee EPF (2006) Mobility of O+ ions in He and interaction potential of HeO+. J. Chem. Phys. 125:084309
  10. Gray BR, Wright TG, Wood EL, Viehland LA (2006) Accurate potential energy curves for F--Rg (Rg=He-Rn): Spectroscopy and transport coefficients. Phys. Chem. Chem. Phys. 8:4752-4757
  11. Gray BR, Lee EPF, Yousef A, Shrestha S, Viehland LA, Wright TG (2006) Accurate potential energy curves for Tl+-Rg (Rg=He-Rn): Spectroscopy and transport coefficients. Mol. Phys. 104:3237-3244
  12. Wright TG, Viehland LA (2006)Accurate potential energy curves for HeS-: spectroscopy and transport coefficients, Chem. Phys. Lett. 420:24-28.
  13. Yousef A, Shrestha S, Viehland LA, Lee EPF, Gray BR, Ayles VL, Wright TG, Breckenridge WH (2007) Interaction potentials and transport properties of coinage metal cations in rare gases. J. Chem. Phys. 127:154309
  14. Danailov DM, Viehland LA, Johnsen R, Wright TG, Dickinson AS (2007) Interaction potential and transport properties of NeO+. J. Chem. Phys. 127:084303
  15. Wright TG, Lee EPF, Gray BR, Joyner NA, Johnson SH, Viehland LA, Breckenridge WH (2007) Accurate potential energy curves for Zn+/Rg (Rg=He-Rn): Spectroscopy and transport coefficients. Chem. Phys. Lett. 450:19-24
  16. Buchachenko AA, Grinev TA, Wright TG, Viehland LA (2008) Interactions between anionic and neutral bromine and rare gas atoms. J. Chem. Phys. 128:064317
  17. Danailov DM, Viehland LA, Johnsen R, Wright TG, Dickinson AS (2008) Transport of O+ through argon. J. Chem. Phys. 128:134302
  18. Wright TG, Gray BR, Viehland LA, Johnsen R (2008) Interaction potentials, spectroscopy and transport properties of Ne+-He and He+-Ne. J. Chem. Phys. 129:184307
  19. Wright TG, Lee EPF, Viehland LA (2008) Interaction potential of Al3+-Ne and the mobility of Al3+ in He and Ne. Chem. Phys. Lett. 467:66-69
  20. McGuirk MF, Viehland LA, Lee EPF, Breckenridge WH, Withers CD, Gardner AM, Plowright RJ, Wright TG (2009) Theoretical study of Ban+-RG complexes and transport of Ban+ through RG (n=1,2; RG=He-Rn). J. Chem. Phys. 130:194305
  21. Buchachenko AA, Wright TG, Lee EPF, Viehland LA (2009) Interaction potentials, spectroscopy and transport properties of the Br+-RG systems (RG=He-Rn). J. Phys. Chem. A 123:14431-14438
  22. Viehland LA, Gray BR, Wright TG (2009) Interaction potentials, spectroscopy and transport properties of RG+-He (RG=Ar-Rn). Mol. Phys. 107:2127-2139
  23. Gardner AM, Withers CD, Wright TG, Kaplan KI, Chapman CYN, Viehland LA, Lee EPF, Breckenridge WH (2010) Theoretical study of the bonding in Mn+-RG Complexes and the transport of Mn+ through RG (M=Ca,Sr,Ra; n=1,2; RG=He-Rn). J. Chem. Phys. 132:054302
  24. Viehland LA, Gray BR, Wright TG (2010) Interactions of rare gas cations with lighter rare gas atoms. Mol. Phys. 108:547-555
  25. Gardner AM, Withers CD, Graneck JB, Wright TG, Viehland LA, Breckenridge WH (2010) Theoretical study of M+-RG and M2+-RG complexes and transport of M+ through RG (M=Be and Mg, RG=He-Rn). J. Phys. Chem. A 114:7631-7642
  26. Gardner AM, Gutsmiedl KA, Wright TG, Breckinridge WH, Chapman CYN, Viehland LA (2010) Theoretical study of Al+-RG (RG=He-Rn). J. Chem. Phys. 133:164302
  27. Withers CD, Wright TG, Viehland LA, Grossman L, Kirkpatrick CC, Lee EPF (2011) Theoretical study of Cl--RG complexes and transport of Cl- through RG (RG=He-Rn). J. Chem. Phys. 135:024312
  28. Gardner AM, Gutsmiedl KA, Wright TG, Lee EPF, Breckenridge WH, Rajbhandari S, Chapman CYN, Viehland LA (2011) Theoretical study of M+-RG complexes (M=Ga,In; RG=He-Rn). J. Phys. Chem. 115:6979-6985
  29. Wright TG (2009-2011) Personal communications to L. A. Viehland
  30. Lee EPF, Viehland LA, Johnsen R, Breckenridge WH, Wright TG (2011) Interaction Potentials of Uranium Cations with RG, and Transport of U+ in RG (RG=He, Ne, Ar, Kr and Xe), J. Phys. Chem. A 115:12126-12131
  31. Harris JP, Gardner AM, Wright TG, Breckenridge WH, Viehland LA (2012) Interactions in the B+-RG complexes and comparison with Be+-RG (RG=He-Rn): Evidence for chemical bonding. J. Phys. Chem. A 116:4995-5007
  32. Buchachenko AA, Viehland LA (2014) Mobility of singly-charged lanthanide cations in rare gases: Theoretical assessment of the state specificity.J. Chem. Phys. 140:114309
  33. Tuttle WD, Thorington RL, Viehland LA, Wright TG (2015) Interaction potentials, spectroscopy and transport properties of C+(2PJ) and C+(4PJ) with Helium. Mol. Phys. 113:3767-3782
  34. Viehland LA, Yang C-L (2015) Improved techniques for the calculation of ab initio ion-neutral interaction potentials: Application to coinage metal ions interacting with rare gas atoms. Mol. Phys. 113:3874-3882
  35. Viehland LA, Johnsen R, Gray BR, Wright TG (2016) Transport coefficients of He+ ions in helium. J. Chem. Phys. 144:074306
  36. Tuttle WD, Thorington RL, Viehland LA, Wright TG (2016) Theoretical study of Si+(2PJ) in RG (RG=He-Ar). Mol. Phys. 15:437-446
  37. Allard NF, Guillon G, Alekseev VA, Kielkopf JF (2016) Theoretical profiles of the Mg+ resonance lines perturbed by collisions with He. Astron. Astrophys. 593:A13
  1. Ellis HW, Pai RY, McDaniel EW, Mason EA, L. A. Viehland (1976) Transport properties of gaseous ions over a wide energy range. At. Data Nucl. Data Tables 17:177-210
  2. Ellis HW, McDaniel EW, Albritton DL, Viehland LA, Lin SL, Mason EA (1978) Transport properties of gaseous ions over a wide energy range. Part II. At. Data Nucl. Data Tables 22:179-217
  3. Ellis HW, Thackston MG, McDaniel EW, Mason EA (1984) Transport properties of gaseous ions over a wide energy range. Part III. At. Data Nucl. Data Tables 31:113-151
  4. Johnsen R,Tosh R, L. A. Viehland LA (1990) Mobility of helium ions in neon: comparison of theory and experiment. J. Chem. Phys. 92:7264-7266
  5. Viehland LA, Mason EA(1995) Transport properties of gaseous ions over a wide energy range. Part IV. At. Data Nucl. Data Tables 60:113-151
  6. Skullerud HR, Elford MT, Roeggen I (1996) The mobility of potassium ions in helium. J. Phys. B 29:1925-1939. The values reported at 295 K have been corrected to 300 K based on the ratio of the theoretical mobilities at these two temperature.
  7. Danailov DM, Viehland LA, Johnsen R, Wright TG, Dickinson AS (2008) Transport of O+ through argon. J. Chem. Phys. 128:134302
  8. Manard MJ, Kemper PR (2016) Characterizing the electronic states of the second-row transition metal cations using high-resolution ion mobility mass spectrometry. Int. J. Mass Spectrom. 407:69-76. The values reported at 295 K have been corrected to 300 K based on the ratio of the theoretical mobilities at these two temperature.
  9. Manard MJ, Kemper PR (2016) Reduced mobilities of lanthanide cations measured using high-resolution ion mobility mass spectrometry with comparisons between experiment and theory. Int. J. Mass Spectrom. 412:14-19. The values reported at 295 K have been corrected to 300 K based on the ratio of the theoretical mobilities at these two temperature. The experimenters did not indicate which isotope they used, so it is assumed to be the one whose theoretical mobility lies closest to the reported value.
  10. Laatiaoui M, Backe H, Habs D, Kunz P, Sewtz M (2014) Low-field mobilities of rare-earth metals. Eur. Phys. J. D 66:232

1