C 1.
1Vero Beach Invitational – Calculus Individual / 2013
B.
C.
D.
1Vero Beach Invitational – Calculus Individual / 2013
A 2.
1Vero Beach Invitational – Calculus Individual / 2013
1
Vero Beach Invitational – Calculus Individual / 2013
E 3.
C 4.
1Vero Beach Invitational – Calculus Individual / 2013
B 5.
1Vero Beach Invitational – Calculus Individual / 2013
D 6. By IVT, Everett knows that 16 is not a possible y-value because it is not within the given range.
D 7.
1Vero Beach Invitational – Calculus Individual / 2013
The curve must be differentiable is not a requirement.
1Vero Beach Invitational – Calculus Individual / 2013
A 8.
1Vero Beach Invitational – Calculus Individual / 2013
B 9. .
1Vero Beach Invitational – Calculus Individual / 2013
1
Vero Beach Invitational – Calculus Individual / 2013
B10.
1Vero Beach Invitational – Calculus Individual / 2013
C 11.
1Vero Beach Invitational – Calculus Individual / 2013
B 12. f has a horizontal tangent at approximately x = 0 because the value of the derivative is zero.
D 13.
1Vero Beach Invitational – Calculus Individual / 2013
D 14.
1Vero Beach Invitational – Calculus Individual / 2013
B15. The largest value is found at f(-2)=63.
1Vero Beach Invitational – Calculus Individual / 2013
E16.
1Vero Beach Invitational – Calculus Individual / 2013
A 17. Monotonic means that the function is strictly increasing or decreasing.
1Vero Beach Invitational – Calculus Individual / 2013
A.
B.
C.
D.
1Vero Beach Invitational – Calculus Individual / 2013
E 18. Extreme Value Theorem
1Vero Beach Invitational – Calculus Individual / 2013
B 19.
1Vero Beach Invitational – Calculus Individual / 2013
E 20.
1Vero Beach Invitational – Calculus Individual / 2013
B 21.
1Vero Beach Invitational – Calculus Individual / 2013
1
Vero Beach Invitational – Calculus Individual / 2013
A 22.
1Vero Beach Invitational – Calculus Individual / 2013
1
Vero Beach Invitational – Calculus Individual / 2013
A 23. It is continuous on .
To not cross the undefined location at zero, it must be
1Vero Beach Invitational – Calculus Individual / 2013
-5 / -2 / 2 / 5 / -2
-2 / 0 / -5 / -5 / 3
2 / -1 / -2 / 2 / 2
3 / 1 / -3 / -2 / 5
5 / -3 / -1 / 3 / -5
D 24.
1Vero Beach Invitational – Calculus Individual / 2013
A 25.
1Vero Beach Invitational – Calculus Individual / 2013
C 26. Average rate of change for on [-2,2]=
Instantaneous rate of change for
g(5) is the derivative
1Vero Beach Invitational – Calculus Individual / 2013
D 27.
1Vero Beach Invitational – Calculus Individual / 2013
C 28.
1Vero Beach Invitational – Calculus Individual / 2013
B 29.
1Vero Beach Invitational – Calculus Individual / 2013
D 30.
1