Supplementary Information

Tables

Table S1. Modified Landy medium used for the growth of Bacillus sp. 0G (M1, M2, M3 and M4) considering the different carbon and nitrogen constituents.

Table S2. Conditions for the analytical curve for the saturated mixtures of p-xylene in water.

Table S3. Experimental conditions for isotropic-phase separation of lipopeptide extracts and surfactants mixed with p-xylene.

Figures

Figure S1: Scheme of the water decontamination protocol using biosurfactants. When a high amount of p-xylene is added to water, a very small fraction will be soluble. Thus xylene almost entirely separates forming a top organic layer (1). In the presence of the crude extract of Bacillus amyloliquefaciens a clear white layer of denatured micelles is formed in the xylene phase, allowing the collection of water from the bottom layer for further analysis. Leaning the mixture, the floating surfactant/xylene mixture can be per passed with a pipette tip and part (400 µl) of the water layer can be collected for extraction and analysis by gas chromatography.

Figure S2: Chromatogram of fatty acid methyl esters (biodiesel) obtained after direct transesterification of microbial biomass originated from growth in M1 medium.

Tables

Table S1. Modified Landy medium used for the growth of Bacillus sp. 0G (M1, M2, M3 and M4) considering the different carbon and nitrogen constituents.

Medium/components in 1 (g l-1) / M1 / M2 / M3 / M4
Carbon source / Glucose / 20 / 20 / 0 / 0
Glycerol / 0 / 0 / 20 / 20
Nitrogen source / Glutamic acid / 5 / 0 / 5 / 0
Arginine / 0 / 5 / 0 / 5
Additional carbon/nitrogen source / Yeast extract / 1 / 1 / 1 / 1
Minerals / K2HPO4 / 1 / 1 / 1 / 1
MgSO4 / 0.5 / 0.5 / 0.5 / 0.5
KCl / 0.5 / 0.5 / 0.5 / 0.5
CuSO4 / 1.6 x 10-3 / 1.6 x 10-3 / 1.6 x 10-3 / 1.6 x 10-3
Fe2(SO4)3 / 1.2 x 10-3 / 1.2 x 10-3 / 1.2 x 10-3 / 1.2 x 10-3
MnSO4 / 0.4 x 10-3 / 0.4 x 10-3 / 0.4 x 10-3 / 0.4 x 10-3
Buffer / MOPS / 20.9 / 20.9 / 20.9 / 20.9

Table S2. Conditions for the analytical curve for the saturated mixtures of p-xylene in water.

Solution / p-xylene (µl) / H2O (µl) / p-xylene (g l-1) / p-xylene (mol l-1)
1 / 2.5 / 497.5 / 4.305 / 0,04
2 / 5 / 495 / 8.61 / 0,08
3 / 10 / 490 / 17.22 / 0,16
4 / 20 / 480 / 34.44 / 0,32
5 / 30 / 470 / 51.66 / 0,48
6 / 40 / 460 / 68.88 / 0,64
7 / 50 / 450 / 86.1 / 0,81
8 / 60 / 440 / 103.32 / 0,96

Table S3. Experimental conditions for isotropic-phase separation of lipopeptide extracts and surfactants mixed with p-xylene.

Surfactant / Collagen hydrolysate
(10 mg ml-1) / Water
(µl) / Ammonium
Sulfate
(mg) / HCl
(1 mol l-1)a / p-xylene
(mol l-1)
Water control / - / 450 / - / - / 0.81
Extract from Bacillus sp. 0G M4 (450 µl) / - / - / - / - / 0.81
Extract from Bacillus sp. 0G M4 (450 µl) / - / - / 150 / - / 0.81
Extract from Bacillus sp. 0G M4 (350 µl) / - / - / - / 100 µl / 0.81
(20 mmol l-1) SDS (50 µl) / 100 µl / 250 / - / - / 1.98
(1 mmol l-1) Surfactin (100 µl) / 100 µl / 250 / - / - / 1.76
(0.7 mmol l-1) Fengycin (100 µl) / 100 µl / 250 / - / - / 1.76
50 µl of Surfactin (1 mmol l-1 )
And 50 µl of Fengycin (0.7 mmol l-1) / 100 µl / 250 / - / - / 1.76

aHydrochloric acid is used to protonate the negative charges of surfactin to reduce solubility in water. It is not necessary to add HCl in the presence of protein hydrolysates to get a similar effect.

Figures

Figure S1

Figure S2