Modelling the excavation damaged zone in Callovo-Oxfordian claystone using shear strain localisation

B. Pardoen1,2, S. Levasseur1, F. Collin1, D. Seyedi3

1ArGEnCo Department, University of Liège, Liège, 4000, Belgium,

2FRIA, F.R.S.-FNRS scholarship holder. E-mail:

3Andra, R&D Division, 92298 Chatenay-Malabery, France.

The solution currently studiedfor long-term management of radioactive waste is the repository in deep argillaceous geological media with low permeability. The drilling of underground galleries in these clayey rocks induces damage propagation in the surrounding medium. Thisexcavation process creates adamaged zonesin which the material properties are modified (Blümling et al. 2007). The prediction of the fracture structure and material properties evolution within this zone is a major issue especially in the context of underground disposal.

Experimental works have highlighted that the damage around galleries in Callovo-Oxfordian claystone is localised and developsmainly as extensional and shear fractures (Armand et al. 2014). We propose to represent these shear fractures with strain localisation in shear band mode. In order to properly represent the shear strain localisation behaviour, an enhanced model introducing a regularization method and an internal length scale is needed. Among the different regularization methods, the coupled second gradient local model is chosen (Collin et al. 2006).

The constitutive mechanical law used for the clayey rock is an elasto-viscoplastic model. Due to their mode of deposition, argillaceous rocks are anisotropic materials with a stratified structure. These materials are therefore characterised by a cross-anisotropy, with an isotropic behaviour in the stratification planes. This cross-anisotropy is taken into account both in the elastic (Graham andHoulsby 1983) and plastic behaviours of the material. The material plasticity is defined by a non-associated Van Eeckelen yield surface including friction angle hardening, cohesion softening as well as cohesion anisotropy. The latter is modelled by introducing a microstructure fabric tensor (Pietruszczak et al. 2002). The creepdeformation of the material is describedby a viscoplastic process that corresponds to a delayed plastic deformation (Zhou et al. 2008). Furthermore,a flow model is used to reproduce transfers in partially saturated porous media. The different parameters used in the model are obtained from the literature and from experimental data fitting. The experimental data are provided by the Frenchnational radioactive waste management agency,Andra.

To illustrate the development of the damaged zone, a two-dimensional plane strain state hydro-mechanical modelling of a gallery excavation is performed (Lagamine code, ULg) for two orientations of the gallery in the Callovo-Oxfordian claystone. Firstly, a gallery oriented along the minor horizontal principal stress is considered. In this direction, the anisotropy of the stress state in the plane perpendicular to the gallery is the predominant factor leading to the elliptical shape of the damaged zone, with a significantly larger extent in the vertical direction. Secondly, a gallery oriented along the major horizontal principal stress is modelled. The stress state in the plane perpendicular to the gallery is quasi-isotropic and does not lead to shear strain localisation unless the material anisotropy is considered. This material anisotropy seems to be the predominant factor leading to the elliptical shape of the damaged zone, with a larger extent in the horizontal direction. Moreover, the modelling provides information about the fracture structure and evolution around the gallery. It exhibits a chevron fracture pattern corresponding to in situ experimental measurements of shear fractures for both considered gallery orientations (Armand et al. 2014).

References :

Armand G, Leveau F, Nussbaum C, de La Vaissiere R, Noiret A, Jaeggi D, Landrein P, Righini C (2014) Geometry and propertiesof the excavation-induced fractures at the Meuse/Haute-MarneURL drifts. Rock Mech Rock Eng 47(1):21–41

Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behaviour andinfluence on performance assessment. Phys Chem Earth32(8–14):588–599

Collin F, Chambon R, Charlier R (2006) A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models.Int J Numer Meth Eng 65(11):1749–1772

Graham J,Houlsby GT (1983)Anisotropicelasticity of a natural clay. Geotechnique 33(2):165–180

Pietruszczak S, Lydzba D, Shao JF (2002) Modelling of inherent anisotropy in sedimentary rocks.Int J Solids Struct 39:637–648

Zhou H, Jia Y, Shao JF (2008)A unified elastic-plastic and viscoplastic damage model for quasi-brittle rocks.Int J Rock Mech Min, 45:1237–1251

Please tag the appropriate:

oral presentation

poster presentation

intended to be proposed as full paper of publication in Proceedings

Topic of scientific programme:

General strategy for clay based repository concepts

Geology and clay characterisation

Geochemistry

Mass transfer

Alteration processes

Geomechanics

Monitoring