Sandra Pizzarello Biographical Sketch

Arizona State University, School of Molecular Sciences, Tempe, AZ 85287

EducationDoctor in Biological Sciences, 1955. Universitá degli Studi di Padova, Padova, Italy Professional Employment - ASU Prof. Emeritus, 2006 – present; Research Prof., 2000 – present; Farmitalia Research LaboratoriesNeuropharmacology Dpt. Milan, Italy Res. Associate, 1957-1960

Research Field Recognition and characterization of the organic compounds in Carbonaceous Meteorites

Significant Publications

[1]J. R. Cronin and S. Pizzarello (1997) Enantiomeric excesses in meteoritic amino acids. Science275, 951-55.

[2]S. Pizzarello, Y. Huang, L. Becker, et al. (2001) The Organic Content of the Tagish Lake Meteorite. Science 293, 2236-39.

[3]S. Pizzarello, M. Zolensky and K.A. Turk (2003) Non-racemic isovaline in the Murchison meteorite: Chiral distribution and mineral association.Geochim. Cosmochim. Acta67, 8, 1589-95.

[4]S. Pizzarello and A.L. Weber (2004) Prebiotic amino acids as asymmetric catalysts. Science303, 1151.

[5]S. Pizzarello and Y. Huang (2005) The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecules precursors” Geochim. Cosmochim. Acta69, 599-605.

[6]S. Pizzarello (2006) The chemistry of life’s origin: A carbonaceous meteorite perspective. Acc. Chem. Res.39, 231-237.

[7] The peptide-catalyzed stereospecific syntheses of tetroses: a possible model for prebiotic molecular evolution.P. Natl. Acad. Sci. USA103, 12713-12717.

[8]S. Pizzarello (2007) The chemistry that preceded life’s origin: A study guide from meteorites. Chemistry& Biodiversity 4, 680-693.

[9]S. Pizzarello, Y. Huang and M.D.R. Alexandre (2008) Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. P. Natl. Acad. Sci. USA105, 7300-04.

[10]S. Pizzarello and W. Holmes (2009) Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules. Geochim. Cosmochim. Acta73, 2150-2162.

[11]S.Pizzarello, L.B.Williams, J. Lehman, G.P. Holland and J.L. Yarger (2011) Abundant ammonia in primitive asteroids and the case for a possible exobiology. P. Natl. Acad. Sci. USA108, 4303-06.

[12] P. Jenniskens et al. (2012) Radar enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrites regolith breccia. Science 338: 1583-87. [10]Pizzarello S., Williams L. B. (2012) Ammonia in the early solar system: An account from meteorites. Ap. J. 749: 161-166.

[12] S.Pizzarello, D.L. Schrader, A.A. Monroe and D.S.Lauretta (2012) Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. PNAS 109: 1949-54

[13]S. Pizzarello (2012) Hydrogen cyanide in the Murchison meteorite. Ap. J. Lett. 754:L27.

[14]Pizzarello S., Davidowski S.K., Holland G.P. and William L.B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. P. Natl. Acad. Sci. USA 110: 15614-15619.

[15]S. Pizzarello (2014) The nitrogen isotopic composition of meteoritic HCN. Ap. J. Lett. 796:L25

[16] S. Pizzarello and M. Bose (2015) The path of reduced nitrogen toward early Earth: The cosmic trail and its solar shortcuts Ap. J 814: 107.

[17] S. Pizzarello and C.T. Yarnes (2016) Enantiomeric excesses of chiral amines in ammonia-rich carbonaceous meteorites. Earth Planet. Sci Let.443:176-84.

[20] S. Pizzarello and E. Shock (2017)Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life. Orig. Life Evol. Biosph. 47: 249-260.