DNA interaction studies of pyrazolone and diimine incorporated Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes: Synthesis, spectroscopic characterization and antimicrobial study

Arunagiri Sakthivel● Natarajan Raman ● Liviu Mitu

Supplementary Information

Figure Captions

Fig. S1a The 1H-NMR. spectrum of ligand (L)in DMSO-d6

(# and * indicate the peaks of solvent DMSO and traces of water respectively)

Fig. S1b The 1H-NMR spectrum of [Zn(L)(phen)2]Cl2 complex in DMSO-d6.

(# and * indicate the peaks of solvent DMSO and traces of water respectively)

Fig. S2 DART Mass spectrum of [Co(L)(phen)2]Cl2.

Fig. S3 The X-band powder spectrum of the [Cu(L)(phen)2]Cl2 complex at 300 K.

Fig. S4 The X-band powder EPR spectrum of [Cu(L)(phen)2]Cl2 complex at 77 K.

Fig. S5 Electronic absorption spectra of [Co(L)(phen)2]Cl2 in the absence and presence of increasing amounts of DNA. {[Complex] = 10 μM, [DNA] = 20 – 180 μM from top to bottom}.Arrow indicates the change in the absorbance upon increasing the DNA concentration.

Fig. S6 Effect of increasing amounts of [NiL(phen)2]Cl2 (), [CoL(phen)2]Cl2 (), [ZnL(phen)2]Cl2 (), [CuL(phen)2]Cl2 () and [MnL(phen)2]Cl2 () on the relative viscosity of CT DNA vs [complex]/[DNA] (1/R) ratio.

Fig. S7 Effect of increasing amounts of [NiL(bpy)2]Cl2 (), [CoL(bpy)2]Cl2 (*), [CuL(bpy)2]Cl2 (), [ZnL(bpy)2]Cl2 () and [MnL(bpy)2]Cl2 () on the relative viscosity of CT DNA vs [complex]/[DNA] (1/R) ratio.

Fig. S8 Cylic voltammograms of 50 μM [Zn(L)(phen)2]Cl2 complex in the absence and presence of DNA concentration 50 μM , 100 μM , 150 μM , 200 μM , 250 μM , 300 μM , 350 μM , respectively with scan rate of 10 mV/s. Supporting electrolyte, 5mM Tris-HCl + 50 mM NaCl in water ( pH 7.2).

Fig. S9a The 13C-NMR spectrum of [Zn(L)(bpy)2]Cl2 complex in DMSO-d6.

(* indicate the DMSO solvent peak)

Fig. S9b The 13C-NMR spectrum of [Zn(L)(phen)2]Cl2 complex in DMSO-d6.

(* indicate the DMSO solvent peak)

Fig. S1a The 1H-NMR spectrum of ligand (L) in DMSO-d6.

(# and * indicate the peaks of solvent DMSO and traces of water respectively)

Fig. S1b The 1H-NMR spectrum of [Zn(L)(phen)2]Cl2 complex.

(# and * indicate the peaks of solvent DMSO and traces of water respectively)

Fig. S2 DART Mass spectrum of [Co(L)(phen)2]Cl2.

Fig. S3 The X-band powder spectrum of the [Cu(L)(phen)2]Cl2 complex at 300 K.

Fig. S4 The X-band powder EPR spectrum of [Cu(L)(phen)2]Cl2 complex at 77 K.

Fig. S5Electronic absorption spectra of [Co(L)(phen)2]Cl2 in the absence and presence of increasing amounts of DNA. {[Complex] = 10 μM, [DNA] = 20 – 180 μM from top to bottom}.Arrow indicates the change in the absorbance upon increasing the DNA concentration.

Fig. S6Effect of increasing amounts of [NiL(phen)2]Cl2 (), [CoL(phen)2]Cl2 (), [ZnL(phen)2]Cl2 (), [CuL(phen)2]Cl2 () and [MnL(phen)2]Cl2 () on the relative viscosity of CT DNA vs [complex]/[DNA] (1/R) ratio.

Fig. S7 Effect of increasing amounts of [NiL(bpy)2]Cl2 (), [CoL(bpy)2]Cl2 (*), [CuL(bpy)2]Cl2 (), [ZnL(bpy)2]Cl2 () and [MnL(bpy)2]Cl2 () on the relative viscosity of CT DNA vs [complex]/[DNA] (1/R) ratio.

Fig. S8 Cylic voltammograms of 50 μM [Zn(L)(phen)2]Cl2 complex in the absence and presence of DNA concentration 50 μM , 100 μM , 150 μM , 200 μM , 250 μM , 300 μM , 350 μM , respectively with scan rate of 10 mV/s. Supporting electrolyte, 5mM Tris-HCl + 50 mM NaCl in water ( pH 7.2).

Fig. S9aThe 13C-NMR spectrum of [Zn(L)(bpy)2]Cl2 complex in DMSO-d6.

*indicate the DMSO solvent peak

Fig. S9b The 13C-NMR spectrum of [Zn(L)(phen)2]Cl2 complex in DMSO-d6.

* indicate the DMSO solvent peak