Online Supplementary Material
Hegyi G, Rosivall B, Szöllősi E, Eens M, Török J
Context-dependent effects of nestling growth trajectories on recruitment probability in the collared flycatcher
Part 1. Detailed tables of results
Supplementary Table 1The two principal components of nestling growth in relation to year type, nestling and parental attributes
Growth PC1 / Growth PC2Predictor / Effect df / Error df / F / Effect size / CI lower / CI upper / Effect df / Error df / F / Effect size / CI lower / CI upper
Year type / 1 / 46.0 / 58.61*** / 0.749 / 0.694 / 0.795 / 1 / 45.6 / 3.64 / 0.272 / 0.163 / 0.374
Sex / 1 / 239.0 / 1.95 / 0.090 / -0.024 / 0.202 / 1 / 227.0 / 1.55 / 0.082 / -0.032 / 0.194
OM age / 1 / 44.7 / 0.32 / 0.084 / -0.030 / 0.196 / 1 / 46.8 / 2.51 / 0.226 / 0.115 / 0.331
FM age / 1 / 44.2 / 0.15 / 0.058 / -0.056 / 0.171 / 1 / 44.9 / 0.10 / 0.047 / -0.067 / 0.160
Rank / 1 / 46.8 / 8.76** / -0.397 / -0.489 / -0.297 / 1 / 42.3 / 140.91*** / -0.877 / -0.901 / -0.848
OMFPS / 1 / 45.2 / 5.46* / 0.328 / 0.223 / 0.426 / 1 / 45.7 / 1.11 / 0.154 / 0.041 / 0.263
OMWPS / 1 / 44.3 / 0.72 / -0.126 / -0.237 / -0.013 / 1 / 46.2 / 2.67 / 0.234 / 0.123 / 0.338
FMFPS / 1 / 44.8 / 6.49* / 0.356 / 0.252 / 0.451 / 1 / 44.8 / 0.02 / 0.021 / -0.093 / 0.134
FMWPS / 1 / 44.4 / 0.77 / 0.131 / 0.017 / 0.241 / 1 / 45.9 / 0.32 / -0.083 / -0.195 / -0.031
Year type x Sex / 1 / 240.0 / 4.43* / 0.135 / 0.021 / 0.245 / 1 / 230.0 / 0.02 / 0.009 / -0.104 / 0.123
Year type x OM age / 1 / 43.7 / 1.05 / 0.153 / 0.040 / 0.262 / 1 / 45.0 / 1.87 / 0.200 / 0.088 / 0.306
Year type x FM age / 1 / 43.6 / 0.25 / 0.076 / -0.038 / 0.188 / 1 / 42.9 / 0.06 / 0.037 / -0.077 / 0.150
Year type x Rank / 1 / 46.8 / 6.91* / 0.359 / 0.255 / 0.454 / 1 / 41.2 / 0.87 / 0.144 / 0.031 / 0.253
Year type x OMFPS / 1 / 46.1 / 1.12 / 0.154 / 0.041 / 0.263 / 1 / 44.8 / 0.23 / 0.071 / -0.043 / 0.184
Year type x OMWPS / 1 / 43.6 / 0.02 / 0.021 / -0.092 / 0.135 / 1 / 44.9 / 1.97 / 0.205 / 0.094 / 0.311
Year type x FMFPS / 1 / 44.4 / 1.13 / 0.158 / 0.045 / 0.266 / 1 / 42.7 / 0.10 / 0.048 / -0.066 / 0.161
Year type x FMWPS / 1 / 43.6 / 0.55 / 0.112 / -0.002 / 0.222 / 1 / 43.4 / 0.12 / 0.053 / -0.061 / 0.165
Sex x OM age / 1 / 237.0 / 0.22 / 0.030 / -0.083 / 0.144 / 1 / 227.0 / 0.01 / 0.007 / -0.107 / 0.120
Sex x FM age / 1 / 236.0 / 0.00 / 0.000 / -0.114 / 0.114 / 1 / 225.0 / 0.06 / 0.016 / -0.097 / 0.130
Sex x Rank / 1 / 217.0 / 0.36 / 0.041 / -0.073 / 0.154 / 1 / 249.0 / 0.11 / 0.021 / -0.093 / 0.134
Sex x OMFPS / 1 / 236.0 / 0.20 / 0.029 / -0.085 / 0.142 / 1 / 225.0 / 0.85 / 0.061 / -0.053 / 0.174
Sex x OMWPS / 1 / 229.0 / 0.00 / 0.000 / -0.114 / 0.114 / 1 / 219.0 / 0.11 / 0.022 / -0.091 / 0.136
Sex x FMFPS / 1 / 233.0 / 0.21 / 0.030 / -0.084 / 0.143 / 1 / 223.0 / 0.01 / 0.007 / -0.107 / 0.120
Sex x FMWPS / 1 / 234.0 / 0.01 / 0.007 / -0.107 / 0.120 / 1 / 223.0 / 1.00 / 0.067 / -0.047 / 0.179
OM age x Rank / 1 / 44.4 / 2.85 / 0.246 / 0.136 / 0.349 / 1 / 40.9 / 2.20 / 0.226 / 0.115 / 0.331
FM age x Rank / 1 / 45.0 / 1.10 / 0.154 / 0.042 / 0.263 / 1 / 41.0 / 0.04 / 0.031 / -0.098 / 0.129
OM age x OMFPS / 1 / 44.2 / 0.05 / 0.034 / -0.080 / 0.147 / 1 / 45.9 / 0.42 / 0.095 / -0.019 / 0.207
OM age x OMWPS / 1 / 42.1 / 1.28 / 0.172 / 0.059 / 0.280 / 1 / 46.2 / 5.27* / 0.320 / 0.214 / 0.418
FM age x FMFPS / 1 / 42.5 / 0.66 / 0.124 / 0.010 / 0.234 / 1 / 42.7 / 0.83 / 0.138 / 0.025 / 0.248
FM age x FMWPS / 1 / 42.1 / 1.25 / 0.170 / 0.057 / 0.278 / 1 / 43.3 / 0.01 / 0.015 / -0.099 / 0.129
Year type x Sex x Rank / 2 / 220.0 / 0.20 / 0.043 / -0.071 / 0.155 / 3 / 112.0 / 0.35 / 0.096 / -0.017 / 0.208
Year type x Sex x OM age / 3 / 99.9 / 2.20 / 0.249 / 0.139 / 0.353 / 4 / 129.0 / 0.61 / 0.136 / 0.023 / 0.246
Year type x Sex x FM age / 3 / 98.6 / 2.50 / 0.266 / 0.157 / 0.368 / 4 / 123.0 / 0.17 / 0.074 / -0.040 / 0.186
Year type x Sex x OMFPS / 3 / 104.0 / 0.84 / 0.154 / 0.041 / 0.263 / 3 / 99.7 / 0.36 / 0.104 / -0.010 / 0.215
Year type x Sex x OMWPS / 3 / 97.4 / 0.03 / 0.030 / -0.084 / 0.144 / 3 / 98.6 / 1.06 / 0.177 / 0.064 / 0.285
Year type x Sex x FMFPS / 3 / 98.5 / 0.57 / 0.131 / 0.017 / 0.241 / 3 / 95.8 / 0.04 / 0.035 / -0.079 / 0.148
Year type x Sex x FMWPS / 3 / 98.9 / 0.76 / 0.150 / 0.037 / 0.259 / 3 / 97.5 / 0.40 / 0.110 / -0.003 / 0.221
Year type x OM age x Rank / 2 / 43.1 / 1.70 / 0.270 / 0.162 / 0.373 / 3 / 39.0 / 1.80 / 0.349 / 0.245 / 0.445
Year type x FM age x Rank / 2 / 43.5 / 1.64 / 0.265 / 0.156 / 0.367 / 3 / 39.4 / 0.29 / 0.147 / 0.034 / 0.256
Year type x OM age x OMFPS / 3 / 43.2 / 1.42 / 0.300 / 0.193 / 0.400 / 3 / 43.5 / 0.84 / 0.234 / 0.124 / 0.339
Year type x OM age y OMWPS / 3 / 40.5 / 0.43 / 0.176 / 0.063 / 0.284 / 2 / 43.8 / 0.97 / 0.206 / 0.095 / 0.312
Year type x FM age x FMFPS / 3 / 41.3 / 0.57 / 0.199 / 0.088 / 0.306 / 3 / 39.7 / 0.41 / 0.173 / 0.061 / 0.281
Year type x FM age x FMWPS / 3 / 40.5 / 0.75 / 0.229 / 0.119 / 0.334 / 3 / 40.3 / 0.23 / 0.130 / 0.016 / 0.240
Sex x OM age x Rank / 3 / 113.0 / 2.34 / 0.242 / 0.132 / 0.346 / 3 / 118.0 / 1.10 / 0.165 / -0.098 / 0.129
Sex x FM age x Rank / 3 / 117.0 / 0.53 / 0.116 / 0.002 / 0.226 / 3 / 115.0 / 0.63 / 0.127 / 0.014 / 0.237
Sex x OM age x OMFPS / 3 / 99.1 / 0.12 / 0.060 / -0.054 / 0.173 / 3 / 102.0 / 0.47 / 0.117 / 0.003 / 0.227
Sex x OM age x OMWPS / 3 / 93.8 / 0.46 / 0.120 / 0.007 / 0.231 / 2 / 218.0 / 0.06 / 0.023 / -0.090 / 0.137
Sex x FM age x FMFPS / 3 / 94.7 / 0.35 / 0.105 / -0.009 / 0.216 / 3 / 94.1 / 0.29 / 0.096 / -0.018 / 0.207
Sex x FM age x FMWPS / 3 / 101.0 / 0.45 / 0.115 / 0.001 / 0.226 / 3 / 100.0 / 0.37 / 0.105 / -0.009 / 0.216
General linear mixed model with nest and nest x rank as random effects (p<0.001 and p=0.114, respectively); only fixed effects are shown here. Results for removed parameters reflect the state of reintroduction to the final model. CI, 95% confidence interval; FM, foster male; FPS, forehead patch size; OM, original male; PC, principal component; WPS, wing patch size; *, p<0.05; **, p<0.01; ***, p<0.001
1
Supplementary Table 2The recruitment probability of individual nestlings in relation to the predictors of growth we used
Predictor / Effect df / Error df / F / Effect size / CI lower / CI upperYear type / 1 / 36.3 / 1.07 / 0.169 / 0.057 / 0.278
Sex / 1 / 275.0 / 2.41 / 0.093 / -0.021 / 0.205
OM age / 1 / 35.8 / 2.46 / 0.254 / 0.144 / 0.357
FM age / 1 / 38.1 / 1.74 / 0.209 / 0.098 / 0.315
Rank / 1 / 39.4 / 1.85 / -0.212 / -0.318 / -0.101
OMFPS / 1 / 35.7 / 1.45 / 0.198 / 0.086 / 0.304
OMWPS / 1 / 33.5 / 2.20 / -0.248 / -0.352 / -0.139
FMFPS / 1 / 39.9 / 0.18 / -0.067 / -0.179 / 0.047
FMWPS / 1 / 35.6 / 0.03 / -0.029 / -0.142 / 0.085
Year type x Sex / 1 / 274.0 / 2.46 / 0.094 / -0.020 / 0.206
Year type x OM age / 1 / 32.6 / 0.08 / 0.049 / -0.065 / 0.162
Year type x FM age / 1 / 37.1 / 0.05 / 0.037 / -0.077 / 0.150
Year type x Rank / 1 / 36.7 / 3.30 / 0.287 / 0.179 / 0.388
Year type x OMFPS / 1 / 34.6 / 0.49 / 0.118 / 0.005 / 0.229
Year type x OMWPS / 1 / 35.1 / 1.26 / 0.186 / 0.074 / 0.294
Year type x FMFPS / 1 / 32.9 / 0.31 / 0.097 / -0.017 / 0.208
Year type x FMWPS / 1 / 33.6 / 0.87 / 0.159 / 0.046 / 0.268
Sex x OM age / 1 / 275.0 / 0.10 / 0.019 / -0.095 / 0.132
Sex x FM age / 1 / 265.0 / 0.44 / 0.041 / -0.073 / 0.154
Sex x Rank / 1 / 221.0 / 0.03 / 0.012 / -0.102 / 0.125
Sex x OMFPS / 1 / 276.0 / 0.20 / 0.027 / -0.087 / 0.140
Sex x OMWPS / 1 / 259.0 / 0.65 / 0.050 / -0.064 / 0.163
Sex x FMFPS / 1 / 277.0 / 4.36* / 0.124 / 0.011 / 0.235
Sex x FMWPS / 1 / 273.0 / 0.33 / 0.035 / -0.079 / 0.148
OM age x Rank / 1 / 35.4 / 0.04 / 0.034 / -0.080 / 0.147
FM age x Rank / 1 / 43.3 / 0.12 / 0.053 / -0.061 / 0.165
OM age x OMFPS / 1 / 37.6 / 0.13 / 0.059 / -0.055 / 0.171
OM age x OMWPS / 1 / 30.7 / 0.10 / 0.057 / -0.057 / 0.170
FM age x FMFPS / 1 / 42.6 / 3.52 / 0.276 / 0.168 / 0.378
FM age x FMWPS / 1 / 46.8 / 1.52 / 0.177 / 0.065 / 0.285
Generalized linear mixed model with binomial error and logit link. Results for removed parameters reflect the state of reintroduction to the final model. We used nest and nest x rank as random effects(p=0.018 and p=0.033, respectively), but only the fixed effects are shown here. CI, 95% confidence interval; FM, foster male; FPS, forehead patch size; OM, original male; WPS, wing patch size; *, p<0.05
Supplementary Table 3The recruitment probability of individual nestlings in relation to growth, intrinsic attributes, and their interaction
Predictor / Effect df / Error df / F / Effect size / CI lower / CI upperYear type / 1 / 56.7 / 0.25 / 0,066 / -0.048 / 0.179
Sex / 1 / 288.0 / 6.98** / 0,154 / 0.041 / 0.263
OM age / 1 / 40.1 / 2.43 / 0,239 / 0.129 / 0.343
Rank / 1 / 277.0 / 2.89 / -0,102 / -0.213 / 0.012
OMFPS / 1 / 39.8 / 1.06 / 0,161 / 0.048 / 0.270
OMWPS / 1 / 43.8 / 2.80 / -0,245 / -0.349 / -0.135
Growth PC1 / 1 / 82.3 / 4.12* / 0,218 / 0.107 / 0.324
Growth PC2 / 1 / 154.0 / 0.01 / 0,008 / -0.106 / 0.122
Year type x Growth PC1 / 1 / 162.0 / 0.55 / 0,058 / -0.056 / 0.171
Year type x Growth PC2 / 1 / 197.0 / 0.32 / 0,04 / -0.074 / 0.153
Sex x Growth PC1 / 1 / 290.0 / 0.30 / 0,032 / -0.082 / 0.145
Sex x Growth PC2 / 1 / 279.0 / 1.95 / 0,083 / -0.031 / 0.195
Rank x Growth PC1 / 1 / 290.0 / 4.82* / 0,128 / 0.014 / 0.238
Rank x Growth PC2 / 1 / 280.0 / 3.17 / 0,106 / -0.008 / 0.217
OM age x Growth PC1 / 1 / 80.6 / 0.24 / 0,054 / -0.060 / 0.167
OM age x Growth PC2 / 1 / 212.0 / 0.23 / 0,033 / -0.081 / 0.146
OMFPS x Growth PC1 / 1 / 69.6 / 0.01 / 0,012 / -0.102 / 0.125
OMFPS x Growth PC2 / 1 / 204.0 / 0.07 / 0,019 / -0.095 / 0.132
OMWPS x Growth PC1 / 1 / 93.1 / 5.11* / -0,228 / -0.333 / -0.118
OMWPS x Growth PC2 / 1 / 148.0 / 1.26 / -0,092 / -0.203 / 0.022
Generalized linear mixed model with binomial error and logit link. We used nest as a random effect (p=0.016), but only the fixed effects are shown here. Results for removed parameters reflect the state of reintroduction to the final model. CI, 95% confidence interval; FPS, forehead patch size; OM, original male; PC, principal component; WPS, wing patch size; *, p<0.05; **, p<0.01
Part 2. Survey of the recent nestling growth literature
Survey methods
We conducted a literature search in Web of Sciencefor papers published in 1999 or later, using the keyword “nestlin* growth”, in a series of 12 journals from the fields of ornithology, ecology, behavioural ecology and evolutionary ecology. From the output, we selected the papers in which the growth of nestling mass was a topic of the paper based on the title and abstract. We accessed the full text in eight of the journals (ornithology: Auk; ecology: Ecology, Journal of Animal Ecology, Oecologia; behavioural ecology: Behavioral Ecology and Sociobiology, Animal Behaviour; evolutionary ecology: Evolution, Proceedings Biological Sciences). In these journals, we determined for each paper we found 1) the scope of the paper regarding nestling growth (description of the general growth trajectory, comparative study among species, determinants of growth only, consequences of growth only, determinants and consequences of growth), and 2) the statistical approach to body mass data (as detailed below). Each paper could be counted only once regarding scope, but multiple times regarding methods if more than one distinct approach was used. We read the full text of 108 such studies. We also read the abstracts of 87 papers from a similar search in four additional journals (ornithology: Condor, Journal of Avian Biology; behavioural ecology: Behavioral Ecology; evolutionary ecology: Journal of Evolutionary Biology). From the abstracts, we could determine the study scope but not the statistical methods. Therefore, our knowledge regarding the scope of nestling growth studies is based on a relatively more comprehensive search of the recent general ornithological, ecological and evolutionary literature, while the methodological survey concerns a representative sample of the literature. The search results are shown in Supplementary Table 4.
Results: study scope
Seven papers were descriptions of the general trajectory of growth in a given population or species, while six were comparative studies among species. Ninety percent of the remaining papers (164 of the 182) examined only the determinants of nestling growth. Eight papers estimated only the consequences of growth (for short-or long-term survival, physiology, future fitness etc). Another ten papers investigated both some determinants and some consequences of growth, but none of these examined whether growth and its predictors interacted in determining offspring fate.
Results: study methods
Regarding the methodology of quantifying growth, we detected 113 different approaches in 107 papers, while methods regarding growth were unclear in one paper. Seven studies were short-term in scope relative to the whole growth period, and these were not considered further. Of the 108 remaining attempts to draw general conclusions about “nestling mass growth”, more than a third analyzed only a single mass datum per nestling (n=17) or raw mass data for more than one age class separately (n=22). Of the 69 approaches indeed concerning the growth trajectory of mass, 21 examined raw or corrected linear mass increments across different linear and non-linearstages of the growth curve, so the results of these can be difficult to interpret or generalize. Therefore, only 48 of the 108 approaches to “nestling mass growth” (45%) truly assessed the mass growth trajectory while also using obviously correct statistical methods. Among these, parameters from logistic and other curves dominated (n=29), followed by the statistical consideration of age in a repeated measures or mixed model (n=11), and the assessment of slopes for the linear phase of growth (n=6). The few studies adopting multiple approaches to growth always interpreted these separately. We failed to find a single study that attempted to integrate information from multiple different descriptors of growth.
Supplementary Table 4Scope and methods of recent papers on nestling growth. Papers using multiple different approaches are listed in more than one row
First author / Year / Journal / Volume / Page / Scope / MethodMüller / 2009 / Behav Ecol Sociobiol / 63 / 809 / Det / B
Dunn / 2009 / Behav Ecol Sociobiol / 63 / 911 / Det / F
Roulin / 2008 / Behav Ecol Sociobiol / 62 / 507 / Det / A
Sockman / 2008 / Behav Ecol Sociobiol / 62 / 617 / Det / C
Siefferman / 2007 / Behav Ecol Sociobiol / 61 / 1839 / Det / H
Soma / 2007 / Behav Ecol Sociobiol / 61 / 1695 / Det / C
Rutkowska / 2007 / Behav Ecol Sociobiol / 61 / 1211 / Det / A
de Ayala / 2006 / Behav Ecol Sociobiol / 60 / 619 / Det / H
Hegyi / 2006 / Behav Ecol Sociobiol / 60 / 672 / Det / G
Hegyi / 2006 / Behav Ecol Sociobiol / 60 / 672 / Det / D
Grim / 2006 / Behav Ecol Sociobiol / 60 / 716 / Det / B
Müller / 2005 / Behav Ecol Sociobiol / 59 / 313 / Det / B
Vedder / 2005 / Behav Ecol Sociobiol / 58 / 429 / Det / B
Leonard / 2003 / Behav Ecol Sociobiol / 54 / 573 / Det / J
Magrath / 2003 / Behav Ecol Sociobiol / 54 / 240 / Det / H
Wright / 2002 / Behav Ecol Sociobiol / 52 / 74 / Det / B
Hoi-Leitner / 2001 / Behav Ecol Sociobiol / 49 / 333 / Det+Con / F
Forbes / 2000 / Behav Ecol Sociobiol / 48 / 413 / Det / I
Vinuela / 2000 / Behav Ecol Sociobiol / 48 / 333 / Det / B
Legge / 2000 / Behav Ecol Sociobiol / 48 / 293 / Det / I
Kleven / 1999 / Behav Ecol Sociobiol / 47 / 41 / Det / F
Thalmann / 2010 / Auk / 127 / 140 / Det / B
Kinnard / 2009 / Auk / 126 / 884 / Det / I
Robertson / 2009 / Auk / 126 / 500 / Det / B
Dawson / 2008 / Auk / 125 / 889 / Det / E
Zalik / 2008 / Auk / 125 / 700 / Det / I
Tonra / 2008 / Auk / 125 / 205 / Det / D
Astie / 2006 / Auk / 123 / 23 / Det / D
Granbom / 2006 / Auk / 123 / 97 / Det / I
Brzek / 2004 / Auk / 121 / 1187 / Det / G
Moreno / 2003 / Auk / 120 / 784 / Det / H
Hipfner / 2002 / Auk / 119 / 827 / Det / E
Ostnes / 2001 / Auk / 118 / 983 / Desc / B
Ramos / 2001 / Auk / 118 / 709 / Det / D
Anava / 2001 / Auk / 118 / 519 / Desc / B
Pereyra / 2001 / Auk / 118 / 116 / Con / B
Pereyra / 2001 / Auk / 118 / 116 / Con / H
McCarty / 2001 / Auk / 118 / 176 / Det+Con / B
McCarty / 2001 / Auk / 118 / 176 / Det+Con / H
Lance / 2000 / Auk / 117 / 1016 / Det / D
Morbey / 2000 / Auk / 117 / 1065 / Det / D
Lepczyk / 2000 / Auk / 117 / 164 / Det / C
Lepczyk / 2000 / Auk / 117 / 164 / Det / F
Reed / 1999 / Auk / 116 / 549 / Det / H
Potvin / 2009 / Anim Behav / 78 / 943 / Det / J
Mennerat / 2009 / Anim Behav / 77 / 569 / Det / A
Rosivall / 2009 / Anim Behav / 77 / 611 / Det / A
te Marvelde / 2009 / Anim Behav / 77 / 727 / Det / E
te Marvelde / 2009 / Anim Behav / 77 / 727 / Det / G
Riou / 2008 / Anim Behav / 76 / 1743 / Det / J
Silva / 2007 / Anim Behav / 74 / 1403 / Det / C
Slagsvold / 2007 / Anim Behav / 73 / 691 / Det / J
Royle / 2006 / Anim Behav / 72 / 123 / Det / B
Schuetz / 2005 / Anim Behav / 70 / 839 / Det / A
Nilsson / 2001 / Anim Behav / 61 / 357 / Det / F
Granadeiro / 1999 / Anim Behav / 57 / 663 / Det / J
Qvarnström / 2009 / Ecology / 90 / 1948 / Det+Con / E
Bonisoli-Alquati / 2008 / Ecology / 89 / 2315 / Det / H
Fitze / 2004 / Ecology / 85 / 2018 / Det / I
Tieleman / 2004 / Ecology / 85 / 1399 / Comp
Tremblay / 2003 / Ecology / 84 / 3033 / Det / I
Heeb / 2000 / Ecology / 81 / 958 / Det / I
Hipfner / 1999 / Ecology / 80 / 1289 / Det / E
Krist / 2009 / J Anim Ecol / 78 / 907 / Det / H
Nicolaus / 2009 / J Anim Ecol / 78 / 828 / Det / I
Nicolaus / 2009 / J Anim Ecol / 78 / 414 / Det / H
O'Brien / 2008 / J Anim Ecol / 77 / 127 / Det / B
Magrath / 2007 / J Anim Ecol / 76 / 1169 / Det / C
Fargallo / 2007 / J Anim Ecol / 76 / 201 / Det / I
Pihlaja / 2006 / J Anim Ecol / 75 / 1154 / Det / E
Tschirren / 2005 / J Anim Ecol / 74 / 675 / Det / H
Ardia / 2005 / J Anim Ecol / 74 / 517 / Det / B
Bize / 2003 / J Anim Ecol / 72 / 633 / Det / F
Hipkiss / 2002 / J Anim Ecol / 71 / 693 / Det / C
Eguchi / 2002 / J Anim Ecol / 71 / 123 / Det / I
Oddie / 2000 / J Anim Ecol / 69 / 903 / Det / H
Styrsky / 2000 / J Anim Ecol / 69 / 690 / Det / B
Styrsky / 2000 / J Anim Ecol / 69 / 690 / Det / I
Torres / 1999 / J Anim Ecol / 68 / 1133 / Det / G
Naef-Daenzer / 1999 / J Anim Ecol / 68 / 708 / Det / C
Krebs / 1999 / J Anim Ecol / 68 / 266 / Det+Con / B
Forbes / 2010 / Oecologia / 163 / 361 / Det / H
Sears / 2009 / Oecologia / 159 / 41 / Con / G
Sears / 2009 / Oecologia / 159 / 41 / Con / A
Moreno / 2008 / Oecologia / 156 / 727 / Det+Con / I
Saino / 2008 / Oecologia / 156 / 441 / Det / H
Snoeijs / 2005 / Oecologia / 145 / 165 / Det / H
Dawson / 2005 / Oecologia / 144 / 499 / Det / B
Krist / 2004 / Oecologia / 140 / 52 / Det / A
Saino / 2002 / Oecologia / 133 / 139 / Det / I
Bize / 2002 / Oecologia / 132 / 231 / Det / H
Lifjeld / 2002 / Oecologia / 130 / 185 / Det / J
Hőrak / 1999 / Oecologia / 121 / 316 / Det+Con / H
Moreno-Rueda / 2010 / Proc R Soc B / 277 / 2083 / Det / J
Miller / 2010 / Proc R Soc B / 277 / 1659 / Det / unclear
Zanette / 2009 / Proc R Soc B / 276 / 2855 / Det / I
Gil / 2008 / Proc R Soc B / 275 / 549 / Det / H
Dubiec / 2006 / Proc R Soc B / 273 / 1759 / Det / I
Tschirren / 2006 / Proc R Soc B / 273 / 1773 / Det / E
von Engelhardt / 2006 / Proc R Soc B / 273 / 65 / Det / A
Ferretti / 2005 / Proc R Soc B / 272 / 769 / Det / B
Brommer / 2004 / Proc R Soc B / 271 / S110 / Det / G
Saino / 2003 / Proc R Soc B / 270 / 2485 / Det / H
Soler / 2003 / Proc R Soc B / 270 / 241 / Det / G
Eising / 2001 / Proc R Soc B / 268 / 839 / Det / A
Nowicki / 2000 / Proc R Soc B / 267 / 2419 / Con / I
Sockman / 2000 / Proc R Soc B / 267 / 1451 / Det / H
Brinkhof / 1999 / Proc R Soc B / 266 / 2315 / Det / H
Styrsky / 1999 / Proc R Soc B / 266 / 1253 / Det / H
Styrsky / 1999 / Proc R Soc B / 266 / 1253 / Det / B
Birkhead / 1999 / Proc R Soc B / 266 / 385 / Det / F
Bize / 2006 / Evolution / 60 / 2370 / Det / A
Remes / 2006 / Evolution / 60 / 1692 / Comp
Remes / 2002 / Evolution / 56 / 2505 / Comp
Badyaev / 2001 / Evolution / 55 / 2534 / Det / C
Badyaev / 2001 / Evolution / 55 / 176 / Det+Con / C
Badyaev / 2001 / Evolution / 55 / 176 / Det+Con / A
Riehl / 2010 / Behav Ecol / 21 / 676 / Det
Ferree / 2010 / Behav Ecol / 21 / 802 / Det
Galizzi / 2008 / Behav Ecol / 19 / 1225 / Det
Tieleman / 2008 / Behav Ecol / 19 / 949 / Det
Leonard / 2008 / Behav Ecol / 19 / 502 / Det
Hauber / 2008 / Behav Ecol / 19 / 79 / Det
Verspoor / 2007 / Behav Ecol / 18 / 967 / Det+Con
de Ayala / 2007 / Behav Ecol / 18 / 526 / Det
Szöllősi / 2007 / Behav Ecol / 18 / 420 / Det
Saino / 2006 / Behav Ecol / 17 / 172 / Det
Blackmer / 2005 / Behav Ecol / 16 / 906 / Det
McDonald / 2005 / Behav Ecol / 16 / 922 / Det+Con
Lloyd / 2004 / Behav Ecol / 15 / 816 / Det
Mermoz / 2004 / Behav Ecol / 15 / 109 / Comp
Martins / 2004 / Behav Ecol / 15 / 174 / Det
Nilsson / 2003 / Behav Ecol / 14 / 175 / Det
Legge / 2001 / Behav Ecol / 12 / 524 / Det
Rodríguez-Girones / 2001 / Behav Ecol / 12 / 269 / Det
Soler / 2001 / Behav Ecol / 12 / 301 / Det
Mainwaring / 2009 / Condor / 111 / 668 / Det
Morrison / 2009 / Condor / 111 / 433 / Con
Stephenson / 2009 / Condor / 111 / 479 / Det
Gaston / 2009 / Condor / 111 / 111 / Det
Sears / 2008 / Condor / 110 / 709 / Det
Eggert / 2008 / Condor / 110 / 134 / Det
Markham / 2008 / Condor / 110 / 183 / Det
Butler / 2007 / Condor / 109 / 920 / Det
Whittingham / 2007 / Condor / 109 / 585 / Det
Fierro-Calderón / 2007 / Condor / 109 / 680 / Desc
Kaiser / 2007 / Condor / 109 / 288 / Det
Holt / 2006 / Condor / 108 / 981 / Desc
Ardia / 2006 / Condor / 108 / 601 / Det
Moreno / 2005 / Condor / 107 / 69 / Desc
Weathers / 2003 / Condor / 105 / 707 / Con
Mermoz / 2003 / Condor / 105 / 63 / Det
Morrison / 2002 / Condor / 104 / 183 / Det
Nagarajan / 2002 / Condor / 104 / 885 / Desc
De Santo / 2002 / Condor / 104 / 482 / Det
Masello / 2002 / Condor / 104 / 574 / Desc
Burhans / 2000 / Condor / 102 / 364 / Det
Fernie / 2000 / Condor / 102 / 461 / Det
Arroyo / 2000 / Condor / 102 / 216 / Det
Rohde / 1999 / Condor / 101 / 96 / Det
Gruebler / 2010 / J Avian Biol / 41 / 282 / Det
Eeva / 2009 / J Avian Biol / 40 / 491 / Det
Newbrey / 2009 / J Avian Biol / 40 / 419 / Det
Pitala / 2009 / J Avian Biol / 40 / 225 / Det
Ruiz-Rodriguez / 2009 / J Avian Biol / 40 / 42 / Det
Masello / 2008 / J Avian Biol / 39 / 653 / Con
Nilsson / 2008 / J Avian Biol / 39 / 553 / Det
Abraham / 2008 / J Avian Biol / 39 / 178 / Det
Rowland / 2007 / J Avian Biol / 38 / 612 / Det
Hegyi / 2007 / J Avian Biol / 38 / 327 / Det
Arnold / 2007 / J Avian Biol / 38 / 356 / Det
Shutler / 2007 / J Avian Biol / 38 / 7 / Det
Bogdanova / 2007 / J Avian Biol / 38 / 83 / Det
Benowitz-Fredericks / 2005 / J Avian Biol / 36 / 287 / Det
Rosivall / 2005 / J Avian Biol / 36 / 531 / Det
Chin / 2005 / J Avian Biol / 36 / 549 / Det
Dawson / 2005 / J Avian Biol / 36 / 127 / Det
Rutkowska / 2005 / J Avian Biol / 36 / 12 / Det
Brown / 2004 / J Avian Biol / 35 / 316 / Con
Arnold / 2003 / J Avian Biol / 34 / 275 / Det
Johnson / 2003 / J Avian Biol / 34 / 35 / Det
Massemin / 2002 / J Avian Biol / 33 / 235 / Det
Legge / 2002 / J Avian Biol / 33 / 159 / Det+Con
Saino / 2001 / J Avian Biol / 32 / 263 / Det
Bradley / 2000 / J Avian Biol / 31 / 522 / Det
Clotfelter / 2000 / J Avian Biol / 31 / 329 / Det
Hipfner / 2000 / J Avian Biol / 31 / 112 / Det
Naef-Daenzer / 2000 / J Avian Biol / 31 / 206 / Det
Takahashi / 1999 / J Avian Biol / 30 / 486 / Det
Pagliani / 1999 / J Avian Biol / 30 / 239 / Det
Hamer / 1999 / J Avian Biol / 30 / 309 / Det
Mainwaring / 2010 / J Evol Biol / 23 / 1302 / Det
Bolund / 2010 / J Evol Biol / 23 / 586 / Con
Tschirren / 2009 / J Evol Biol / 22 / 387 / Det
Romano / 2008 / J Evol Biol / 21 / 1626 / Det
Remes / 2007 / J Evol Biol / 20 / 320 / Comp
Biard / 2007 / J Evol Biol / 20 / 326 / Det
Rubolini / 2006 / J Evol Biol / 19 / 1571 / Det
Cichon / 2006 / J Evol Biol / 19 / 1701 / Det
Ferrari / 2006 / J Evol Biol / 19 / 981 / Det
Roff / 2005 / J Evol Biol / 18 / 1425 / Comp
Tschirren / 2003 / J Evol Biol / 16 / 91 / Det
Kunz / 2000 / J Evol Biol / 13 / 199 / Det
Badyaev / 2000 / J Evol Biol / 13 / 290 / Det
Comp, comparative study; Con, consequences; Desc, description; Det, determinants; A, statistical consideration of age; B, logistic curve parameters; C, other curve parameters; D, linear slope; E, raw mass increment; F, raw mass increment per unit time; G, raw mass increment corrected for original mass; H, raw mass data from multiple ages; I, raw mass data from a single age; J, short-term study.
Part 3. Alternative plotting of differential growth effects on recruitment probability
Supplementary Fig. 1The growth rate (PC1) of disappeared and returned nestlings in relation to (a) their standardized hatching rank and (b) the standardized WPS of their genetic father. Omitting the returning nestling with the highest growth rate value does not affect the results described in the main text of our paper
1