Diversity of Life Part 1
Monday 8th: Review Test and Three Domains
Tuesday 9th: Phylogenies and Cladograms (Parade through the Domains/Kingdoms)
Wednesday 10th: Characteristics of Bacteria, BB and Ted Ed Talks Quorum Sensing
Thursday 11th: Symbiotic Relationships, the Good and the Bad
Friday 12th: Reproduction and Genetic Recombination
Monday 15th: Transformation Lab
Tuesday 16th: Transformation Lab
Wednesday 17th: Endosymbiotic Theory/Protists/Fungi
Thursday 18th : Quiz and Evolution of Plants
Friday 19th: Animal Diversity
Monday 22nd: Modeling Germ Layers and Symmetry
Tuesday 23rd: Homeobox and Sonic Hedgehog
Wednesday 24th: Animal Diversity Matching
Thursday 25th: Animal Homologies
Friday 26th: Parade through the Kingdom Review/Who am I?
Monday 29th: Test over Unit 2 Diversity of Life
Due Date / Homework AssignmentWednesday 10th / Cladograms
Friday 12th / Ch 27 Reading guide
Monday 15th / Transformation Introduction/Lab Bench Lab 6
Thursday 18th / Quiz over Bacteria/Endosymbiotic theory
Monday 22nd / Formal Lab for Transformation
Tuesday 23rd / Ch 32 Reading guide
Thursday 25th / Parade through the Kingdom Worksheet
Monday 29th / Vocabulary Due and Unit 2A Test
Vocabulary and Review
LO 1.16 Justify the scientific claim that organisms share many conserved core processes and features that evolved and are widely distributed among organism today.
*Discuss the various methods of genetic diversity in prokaryotes.
- Mutation
- Genetic Recombination
-transformation
-transduction
-conjugation
*Describe key adaptations that contribute to prokaryote success.
- cell wall
-peptidoglycan
-gram +
-gram –
- capsule
- fimbriae
- pili
- binary fission
- endospores
*Explain how prokaryotes use specialized membranes to carry out basic metabolic tasks.
*Distinguish between the four major modes of prokaryote nutrition.
- Obligate aerobes
- Obligate anaerobes
- Anaerobic respiration
- Facultative anaerobes
*Describe the crucial role of prokaryotes in the biosphere.
- Nitrogen fixation
- Decomposers
- Mutualistic relationships
*Explain quorum sensing and explain why it is important to bacteria from the aspect of natural selection.
LO 1.17 The student is able to pose scientific questions about a group of organisms whose relatedness is described by a phylogenetic tree or cladogram in order to (1) identify shared characteristics, (2) make inferences about the
evolutionary history of the group, & (3) identify character data that extend or improve the phylogenetic tree.[See SP 3.1]
LO 1.18 The student is able to evaluate evidence provided by a data set in conjunction with a phylogenetic tree or a simple cladogram to determine evolutionary history and speciation. [See SP 5.3]
LO 1.19 The student is able create a phylogenetic tree or simple cladogram that correctly represents evolutionary history and speciation from a provided data set.[See SP 1.1]
* Construct a cladogramor phylogenic tree that represents each of the following evolutionary relationships.
Under each diagram define each derived characteristic and explain the advantage of each. (3)
- number of heart chambers in animals (2 chambered, 3 chambered, 4 chambered)
- plant diversity (moss, ferns, gymnosperms, angiosperms)
-spores/seeds
-vascular/nonvascular
-cones/fruit
- digestive mechanisms in animals (collar cells, gastrovascular cavity, alimentary canal, digestive system)
LO 1.26 The student is able to evaluate given data sets that illustrate evolution as an ongoing process. [See SP 5.3]
*Describe an example of evolution? (2)
- Eukaryote limbs
- Eukaryote nervous system
- Prokaryotes to Eukaryotes (endosymbiotic theory)
LO 2.25 The student can construct explanations based on scientific evidencethat homeostatic mechanisms reflect continuity due to common ancestry and/ordivergence due to adaptation in different environments. [See SP 6.2]
LO 2.26 The student is able to analyze data to identify phylogenetic patterns or relationships, showing homeostatic mechanisms reflect both continuity due to common ancestry & change due to evolution in different environments.SP 5.1
LO 2.27 Student is able to connect differences in the environment with theevolution of homeostatic mechanisms. SP 7.1
*Compare the various mechanisms organisms use for obtaining nutrients and eliminating wastes and relate it to
evolutionary adaptations? (3)
- digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, one-way digestive system
-include representative organisms
-Surface area
- respiratory systems of aquatic versus terrestrial organisms (water to land include representative organisms)
-moist membranes
-Gills
-Lungs/alveoli
-Skin
-Tracheal system
-Countercurrent exchange
- nitrogenous waste production and elimination in aquatic (fish) and terrestrial animals (birds and mammals)
-include representative organisms
-ammonia
-Urea
-Uric Acid
*Discuss how homeostatic control systems in species support common ancestry?
- excretory systems in flatworms, earthworms and vertebrates
-protonephridia, metanephridium, nephron
- osmoregulation in bacteria, fish and protists
-diffusion/osmosis, osmoconformer, osmoregulator, contractile vacuole
- circulatory system in fish, amphibians, and mammals
-single circulation, two chambered heart, double circulation, three chambered heart, four chambered heart
- thermoregulation in aquatic and terrestrial animals (countercurrent exchange mechanism)
*Discuss how Archaea Bacteria have adapted to different extreme environments?
- Thermophiles, Halophiles and Methanogens
LO 2.31 The student can connect concepts in and across domains to show thattiming and coordination of specific events are necessary for normal development in an organism & these events are regulated by multiple mechanisms.(SeeSP 7.2]
LO 2.32 The student is able to use a graph or diagram to analyze situations or solve problems (quantitatively or qualitatively) that involve timing and coordination of events necessary for normal development in an organism. [SP 1.4]
LO 2.33 Justify scientific claims with scientific evidence to show that timing and coordination of several events are necessary for normal development in an organism and that these events are regulated by multiple mechanisms. [SP 6.1]
*Define homeotic genes and explain how they affect development patterns? (4)
- Hox genes/Sonic Hedgehog
* Describe the process of embryonic development?
- cleavage, blastula, gastrulation, gastrula, protostome, deutrostome
*Compare and contrast the morphological and developmental traits used to categorize animals based on body plan.
- Tissues
-Germ layers (ectoderm, mesoderm, endoderm)
- Body cavity
-coelomates
-psuedocoelomates
-acoelomates
*How does the symmetry of an organism tend to fit its lifestyle?
-radial, bilateral
-cephalization