Operations with Signed Numbers

Addition

SAME SIGNS DIFFERENT SIGNS

ADD the numbers and KEEP the sign. SUBTRACT the numbers and keep the sign of the LARGER number.

Do Now:

1) 11 + 15 2) -11 + (-15) 3) 11 + (-15) 4) -11 +15

Subtraction

K (keep) C (change) O (opposite)

All subtraction problems can be changed to addition problems by changing the “ – “ to “ + “ and changing the sign of the number that follows the subtraction sign. Then you just follow the rules of addition.

Example: 25 – 10 = 15 34 – (-10) = 44

25 – 10 = 34 – (-10) =

K C O K C O

25 + (-10) = 34 + (+10) =

15 44

Do Now:

5) 12 - 15 6) 12 - (-15) 7) -12 – 15 8) - 12 – (-15)

Multiplication and Division

SAME SIGNS DIFFERENT SIGNS

Product or Quotient is POSITIVE Product or Quotient is NEGATIVE

Do Now:

9) 8 ∙ ¾ 10) – 8 ∙ ¾ 11) 8 ∙ - ¾ 12) -8 ∙ - ¾

13) 15 ÷ ⅝ 14) -15 ÷ ⅝ 15) 15 ÷ - ⅝ 16) -15 ÷ - ⅝

Part I:
1) 28 + (-31) = 2)-41.4 + (-19.8) =

3) 23.8 - (-38.3)= 4) -45.07 - (-46.2) =

5) (-7 ½)(5 ⅓)= 6) (-6 ¾)(- 4 ½ )=

7) (2 ½ ) ÷ (-3 ⅛)= 8) -16 ÷ (- 5 ¼ )=

9) 100- 122 · (- ½) + (8)(-2) = 10) x= -5:3x2 ÷(35 - 4x)+x =

11) a = 5 b = -6 c = -3 12) x =-10 y =4 z =- 2

[2b2 - a3 ÷ (8c - 1)] ÷ (-2a - 1) 4y2 - 8x ÷ (2z) + 6

12c2 + 12b– 2a - 42x2 + 15z - 10y- 55

Part II:
1) 24 - 12 · 3 + 6 =

a) 6 b) 42 c) -6 d) – 192

2) 36 + 33÷ (1/9) - 8 · (12) =

a) 130 b) 171 c) 183 d) 4,764

3) Evaluate: 52÷ (-22 + 32) + 24 · (1/4) =

4) Evaluate: 122 - 42÷ (-1/2) + 2 · (-3)2 =

5) a = -3 b = 7

5a - 12b + 9 · 3=

2b - 3a + 1

6) Evaluate 3y2 + 8x = , when x = 3 and y= -2

a) 12 b) 36 c) 60 d) 0

7) (112 + 20 ∙ ¾ ) ÷ 4 – 5 ∙ 7 =

8) Evaluate when a = -5, b = 4, and c = -2

3b – 16 ÷ 2c + 3a .

(2a2 + 9c) ÷ 4b