Operations with Signed Numbers
Addition
SAME SIGNS DIFFERENT SIGNS
ADD the numbers and KEEP the sign. SUBTRACT the numbers and keep the sign of the LARGER number.
Do Now:
1) 11 + 15 2) -11 + (-15) 3) 11 + (-15) 4) -11 +15
Subtraction
K (keep) C (change) O (opposite)
All subtraction problems can be changed to addition problems by changing the “ – “ to “ + “ and changing the sign of the number that follows the subtraction sign. Then you just follow the rules of addition.
Example: 25 – 10 = 15 34 – (-10) = 44
25 – 10 = 34 – (-10) =
K C O K C O
25 + (-10) = 34 + (+10) =
15 44
Do Now:
5) 12 - 15 6) 12 - (-15) 7) -12 – 15 8) - 12 – (-15)
Multiplication and Division
SAME SIGNS DIFFERENT SIGNS
Product or Quotient is POSITIVE Product or Quotient is NEGATIVE
Do Now:
9) 8 ∙ ¾ 10) – 8 ∙ ¾ 11) 8 ∙ - ¾ 12) -8 ∙ - ¾
13) 15 ÷ ⅝ 14) -15 ÷ ⅝ 15) 15 ÷ - ⅝ 16) -15 ÷ - ⅝
Part I:
1) 28 + (-31) = 2)-41.4 + (-19.8) =
3) 23.8 - (-38.3)= 4) -45.07 - (-46.2) =
5) (-7 ½)(5 ⅓)= 6) (-6 ¾)(- 4 ½ )=
7) (2 ½ ) ÷ (-3 ⅛)= 8) -16 ÷ (- 5 ¼ )=
9) 100- 122 · (- ½) + (8)(-2) = 10) x= -5:3x2 ÷(35 - 4x)+x =
11) a = 5 b = -6 c = -3 12) x =-10 y =4 z =- 2
[2b2 - a3 ÷ (8c - 1)] ÷ (-2a - 1) 4y2 - 8x ÷ (2z) + 6
12c2 + 12b– 2a - 42x2 + 15z - 10y- 55
Part II:
1) 24 - 12 · 3 + 6 =
a) 6 b) 42 c) -6 d) – 192
2) 36 + 33÷ (1/9) - 8 · (12) =
a) 130 b) 171 c) 183 d) 4,764
3) Evaluate: 52÷ (-22 + 32) + 24 · (1/4) =
4) Evaluate: 122 - 42÷ (-1/2) + 2 · (-3)2 =
5) a = -3 b = 7
5a - 12b + 9 · 3=
2b - 3a + 1
6) Evaluate 3y2 + 8x = , when x = 3 and y= -2
a) 12 b) 36 c) 60 d) 0
7) (112 + 20 ∙ ¾ ) ÷ 4 – 5 ∙ 7 =
8) Evaluate when a = -5, b = 4, and c = -2
3b – 16 ÷ 2c + 3a .
(2a2 + 9c) ÷ 4b