REFERENCES

Aki, K., Richards, P. G., 2002, Quantitative seismology, second edition, University Science Books, Sausalito, California, 700p.

Alexander, S. S., Phinney, R. A., 1966, A study of the core-mantle boundary using P waves diffracted by the earth’s core, J. Geophys. Res., Vol. 71, No. 24, pp. 5943-5958, doi:10.1029/JZ071i024p05943.

Ammann, M. W., J. P. Brotholdt, J. Wookey, and D. P. Dobson, 2010, First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer, Nature, Vol. 465, 462-465, doi:10.1038/nature09052.

Bassin, C., G. Laske, and G. Masters, 2000, The current limits of resolution for surface wave tomography in North America (abstract), Eos, Transactions of the American Geophysical Union 81, F897 (

Burke, K., B. Steinberger, T. H. Torsvik, and M. A. Smethurst, 2008, Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary, Earth Planet. Sci. Lett., 265, 49–60, doi:10.1016/j.epsl.2007.09.042.

Courtier, A. M., B. Bagley, and J. Revenaugh, 2007, Whole mantle discontinuity structure beneath Hawaii, Geophys. Res. Lett., Vol. 34, L17304, doi:10.1029/2007GL031006.

Deschamps, F., and P. J. Tackley, 2009, Searching for models of thermo-chemical convection that explain probabilistic tomography II—Influence of physical and compositional parameters, Phys. Earth Planet. Inter., 176, 1–18, doi:10.1016/j.pepi.2009.03.012.

Doornbos, D. J., 1983, Present seismic evidence for a boundary layer at the base of the mantle, J. Geophys. Res., Vol. 88, No. B4, pp. 3498–3505, doi:10.1029/JB088iB04p03498.

Dziewonski, A. M. , D. L. Anderson, 1981, Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 25, S.297-356.

Euler, G. G., 2012,Seismic Array Analysis of Core-Diffracted Waves and Microseisms, PhD Thesis, Washington University, St. Louis, MO.

Euler, G. G., and M. E. Wysession, 2014, Geographic variations in the lowermost mantle from the ray parameter and decay constant of core-diffracted waves, in preparation.

Fisher, J. L., M. E. Wysession, K. M. Fischer, 2003, Small-scale lateral variations in D'' attenuation and velocity structure, Geophys. Res. Lett., 30,10.1029/2002GL016179, 26 April 2003.

Frost, D. A., S. Rost, N. D. Selby, and G. W. Stuart, 2013, Detection of a tall ridge at the core-mantle boundary from scattered PKP energy, Geophys. J. Int., doi: 10.1093/gji/ggt242.

Garnero, E., J. Revenaugh, Q. Williams, T. Lay, and L. Kellogg, 1988, Ultra-lowvelocity zone at the core-mantle boundary, in Constraints on the Core-Mantle Boundary Region, Geodyn. Ser., vol. 28, edited by M. Gurnis etal., pp. 319– 334, AGU, Washington, D.C.

Garnero, E. J., T. Lay, and A. McNamara, 2007, Implications of lower-mantle structural heterogeneity for the existence and nature of whole-mantle plumes, GSA Special Papers, Vol. 430, 79-101.

Garnero, E. J., M. S. Thorne, A. McNamara, S. Rost, 2007, Fine-Scale Ultra-Low Velocity Zone Layering at the Core-Mantle Boundary and Superplumes, in Superplumes: Beyond Plate Tectonics, pp. 139-158.

Gubbins, D., A. P. Willis, and B. Sreenivasan, 2007, Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure, Phys. Earth Planet. Int., Vol. 162(3-4), 256-260, doi:10.1016/j.pepi.2007.04.014.

He, Y., and L. Wen, 2009, Structural features and shear-velocity structure of the "Pacific Anomaly,”J. Geophys. Res., 114, B02309, doi:10.1029/2008JB005814.

Hernlund, J. W., Thomas, C., Tackley, P. J., 2005, A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle, Nature, Vol. 434, pp. 882-886, doi:10.1038/nature03472.

Hirose, K. J. Brodholt, T. Lay, and D. Yuen, 2007, Seismic anisotropy of post-perovskite and the lowermost mantle, in Post-Perovskite: The Last Mantle Phase Transition, DOI:10.1029/174GM13.

Hock, S., Roth, M., Müller G., 1997, Long-period ray parameters of the core diffraction Pdiff and mantle heterogeneity, J. Geophys. Res., Vol. 102, No. B8, pp. 17843-17856.

Holme, R., N. Olsen, and F. L. Bairstow, 2011, Mapping secular variation at the core-mantle boundary, Geophys. J. Int., Vol. 186(2), 521-528.

Houser, C., Masters, G., Shearer, P., Laske, G., 2008, Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms, Geophys. J. Int., Vol. 174, No. 1, pp. 195-212, doi:10.1111/j.1365-246X.2008.03763.x.

Hutko, A. R., Lay, T., Revenaugh, J., 2009, Localized double-array stacking analysis of PcP: D" and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific, Phys. Earth Planet. Int., Vol. 173, pp. 60-74, doi:10.1016/j.pepi.2008.11.003.

Hutko, A. R., Lay, T., Garnero, E. J., Revenaugh, J., 2006, Seismic detection of folded, subducted lithosphere at the core-mantle boundary, Nature, Vol. 441, pp. 333-336, doi:10.1038/nature04757.

Hutko, A. R., Lay, T., Revenaugh, J., Garnero, E. J., 2008, Anti-correlated seismic velocity anomalies from post-Perovskite in the lowermost mantle, Science, Vol. 320, pp. 1070-1074, doi:10.1126/science.1155822.

Jellinek, A. M., and M. Manga, 2002, The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes, Nature, 418, 760–763, doi:10.1038/nature00979.

Kennett, B. L. N., 1983,Seismic Wave Propagation in Stratified Media, Cambridge University Press, Cambridge, MA.

Kustowski B., G. Ekstrom, and A. M. Dziewonski, 2008, Anisotropic shear-wave velocity structure of the Earth's mantle: A global model , J. Geophys. Res., 113, B06306, doi: 10.1029/2007JB005169.

Lay, T., and E. J. Garnero, 2011, Deep Mantle Seismic Modeling and Imaging, Annual Review of Earth and Planetary Sciences, Vol. 39: 91-123, DOI: 10.1146/annurev-earth-040610-133354.

Lay, T., and Helmberger, D. V., 1983, The shear-wave velocity gradient at the base of the mantle, J. Geophys. Res., Vol. 88, No. B10, pp. 8160-8170.

Lay, T., J. Hernlund, and B. A. Buffett, 2008, Core-mantle boundary heat flow, Nature Geoscience, Vol. 1, 25-32, doi:10.1038/ngeo.2007.44.

Manners, U., 2008, Investigating the structure of the core-mantle boundary region using S and P diffracted waves, PhD thesis, University of California, San Diego.

McNamara, A. K., and S. Zhong, 2004, Thermochemical structures within a spherical mantle: Superplumes or piles?, J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.

McNamara, A. K., E. J. Garnero, and S. Rost, 2010, Tracking deep mantle reservoirs with ultra-low velocity zones, Earth Planet. Sci. Lett., Vol. 299, 1-9.

Mondt, J. C., 1977, SH waves: theory and observations for epicentral distances greater than 90 degrees, Phys. Earth. Planet. Int., Vol. 15, pp. 46-59.

McNamara, A. K., and S. Zhong, 2005, Thermochemical structures beneath Africa and the Pacific Ocean, Nature, 437, 1136–1139, doi:10.1038/nature04066.

Merkel, S., A. K. McNamara, A. Kubo, S. Speziale, L. Miyagi, Y. Meng, T. S. Duffy, and H.-R. Wenk, 2007, Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy, Science, Vol. 316(5832) 1729-1732.

Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S.-H. Hung, 2003, Finte-frequency tomography reveals a variety of plumes in the mantle, Science, Vo. 303(5656), 338-343, DOI: 10.1126/science.1092485.

Morard, G. D. Andrault, N. Guignot, J. Siebert, G. Garbardino, and D. Antonangeli, 2011, Melting of Fe–Ni–Si and Fe–Ni–S alloys at megabar pressures: implications for the core–mantle boundary temperature, Phys. and Chem. Of Minerals, Vol. 38(10), 767-776.

Mula, A. H. G., 1981, Amplitudes of diffracted long-period P and S waves and the velocities and Q structure at the base of the mantle, J. Geophys. Res., Vol. 86, No. B6, pp. 4999-5011.

Mula, A. H., Müller, G., 1980, Ray parameters of diffracted long period P and S waves and the velocities at the base of the mantle, Pageoph., Vol. 118, pp. 1272-1292.

Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y., 2004, Post-perovskite phase transition in MgSiO3, Science, Vol. 304, pp. 855-858.

National Research Council, A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas, The National Academies Press, 385 pp., 2011.

Next Generation Science Standards, Achieve, Inc., The National Academies Press, 532 pp., 2013.

Ni, S., E. Tan, M. Gurnis, and D. Helmberger, 2002, Sharp sides to the African superplume, Science, 296, 1850–1852, doi:10.1126/science.1070698.

Nissen-Meyer, T., Dahlen, F. A., Fournier, A., 2007, Spherical-Earth Fréchet sensitivity kernels, Geophys. J. Int., Vol. 168, pp. 1051–1066, doi:10.111/j.1365-246X.2006.03123.x.

Nyblade, A., C. Ramirez, B. C. Bagley, G. D. Mulibo, F. Tugume, M. E. Wysession, and D. A. Wiens, 2014, Shear Wave Splitting Across Eastern, Western, and Southern Africa, Abstract at 2014 Fall Meeting, AGU, San Francisco, Calif., submitted.

Ohta, K., K. Hirosi, T. Lay, N. Sata, and Y. Ohishi, Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core–mantle boundary, EPSL, Vol. 267(1-2), 107-117.

Ohta, K., T. Yagi, N. Taketoshi, K. Hirose, T. Kombayashi, T. Baba, Y. Ohishi, and J. Hernlund, 2012, Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary, EPSL, Vol. 349-350, 109-115.

Olson, P. L., R. S. Coes, P. E. Driscoll, G. A. Glatzmaier, and P. H. Roberts, 2010, Geodynamo reversal frequency and heterogeneous core-mantle boundary heat flow, PEPI, Vol. 180 (1-2), 66-79.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011a, Astronomy and Space Science, Interactive Science [A national Middle School science program], Pearson Education, 178 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011b, Cells and Heredity, Interactive Science [A national Middle School science program], Pearson Education, 218 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011c,The Diversity of Life, Interactive Science [A national Middle School science program], Pearson Education, 312 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011d, Earth’s Structure, Interactive Science [A national Middle School science program], Pearson Education, 174 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011e, Earth’s Surface, Interactive Science [A national Middle School science program], Pearson Education, 162 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011f, Ecology and the Environment, Interactive Science [A national Middle School science program], Pearson Education, 223 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011g, Forces and Energy, Interactive Science [A national Middle School science program], Pearson Education, 248 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011h, Human Body Systems, Interactive Science [A national Middle School science program], Pearson Education, 312 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011i, Introduction toChemistry, Interactive Science [A national Middle School science program], Pearson Education, 250 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011j, Science and Technology, Interactive Science [A national Middle School science program], Pearson Education, 172 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011k, Sound and Light, Interactive Science [A national Middle School science program], Pearson Education, 156 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2011l, Water and the Atmosphere, Interactive Science [A national Middle School science program], Pearson Education, 216 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012a, Grade K, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 310 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012b, Grade 1, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 326 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012c, Grade 2, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 350 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012d, Grade 3, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 442 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012e, Grade 4, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 464 pp.

Padilla, M., D. Buckley, Z. Miller, K. Thornton, and M. E. Wysession, 2012f, Grade 5, Interactive Science [A national K-5 Elementary School science program], Pearson Education, 538 pp.

Phinney, R. A., Alexander, S. S., 1966, P wave diffraction theory and the structure of the core-mantle boundary, J. Geophys. Res., Vol. 71, No. 24, pp. 5959-5975.

Phinney, R. A., Alexander, S. S., 1969, The effect of a velocity gradient at the base of the mantle on diffracted P waves in the shadow, J. Geophys. Res., Vol. 74, No. 20, pp. 4967-4971.

Phinney, R. A., Cathles, L. M., 1969, Diffraction of P by the core: a study of long-period amplitudes near the edge of the shadow, J. Geophys. Res., Vol. 74, No. 6, pp. 1556-1574.

Pratt, M. J., M. E. Wysession, D. A. Wiens, A. Nyblade, G. I. Aleqabi, P. J. Shore, G. Rambolamanana, F. Sy Tanjona Andriampenomanana, T. Rakotondraibe, 2013, Receiver function analysis and preliminary body wave tomography of the MACOMO network in Madagascar, Abstract S23A-2474 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.

Pratt, M. J., G. I. Aleqabi, M. E. Wysession, D. A. Wiens, A. Nyblade, P. J. Shore, G. Rambolamana, T. Rakotondraibe, and F. Sy Tanjona Andriampenomanana, 2014, Combined teleseismic surface wave and receiver function analysis of the crust and upper mantle of Madagascar, Abstract at 2014 Fall Meeting, AGU, San Francisco, Calif., submitted.

Ren., Y., E. Stutzmann, R. van der Hilst, and J. Besse, 2007, Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history, J. Geophys. Res., Vol. 112(B1), DOI:10.1029/2005JB004154.

Rickers, F., A. Fitchner, and J. Trampert, 2012, Imaging mantle plumes with instantaneous phase measurements of diffracted waves, Geophys. J. Int., Vol. 190, 650-664.

Ritsema, J., E. Garnero, and T. Lay, 1997, A strongly negative shear velocity gradient and lateral variability in the lowermost mantle beneath the Pacific, J. Geophys. Res., 102, 20,395-20,411.

Romanowicz, B., 2009, Finite frequency effects on global S diffracted traveltimes, Geophys. J. Int., Vol. 179, 1645-1657.

Sacks, I. S., 1966, Diffracted wave studies of the earth’s core, 1. amplitudes, core size, and rigidity, J. Geophys. Res., Vol. 71, No. 4, pp. 1173-1181.

Shore, P. J., G. I. Aleqabi, M. E. Wysession, D. A. Wiens, A. Nyblade, G. Rambolamana, T. Rakotondraibe, F. Sy Tanjona Andriampenomanana, 2013, The structure of the lithosphere and asthenosphere beneath Mozambique and Madagascar from combined surface wave and ambient noise tomography, Abstract S31A-2347 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.

Simmons, N. A., A. M. Forte, and S. P. Grand, 2007, Thermochemical structure and dynamics of the African superplume, Geophys. Res. Lett., Vol. 34(2), DOI:10.1029/2006GL028009.

Solomatov, V. S., Moresi, L.-N., 2002, Small-scale convection in the D” layer, J. Geophys. Res., Vol. 107, No. B1, doi:10.1029/2000JB00063.

Souriau, A., Poupinet, G., 1994, Lateral variations in P velocity and attenuation in the D” layer from diffracted P waves, Phys. Earth Planet. Int., Vol. 84, pp. 227-234.

Steinberger, B., and R. Holme, 2008, Mantle flow models with core-mantle boundary constraints and chemical heterogeneities in the lowermost mantle, J. Geophys. Res., Vol. 113(B5), DOI:10.1029/2007JB005080.

Sun, D., D. V. Helmberger, J. M. Jackson, R. W. Clayton, and D. J. Bower, 2013, Rolling hills on the core-mantle boundary, Earth Planet. Sci. Lett., Vol. 361, 333-342.

Sylvander, M., Ponce, B., Souriau, A., 1997, Seismic velocities at the core-mantle boundary inferred from P waves diffracted around the core, Phys. Earth Planet. Int., Vol. 101, pp. 189-202.

Taber, J., M. Hubenthal, and M. E. Wysession, 2009, Review of IRIS Education and Outreach: 2009, 32 pp.

Tan, E., W. Leng, S. Zhong, and M. Gurnis, 2011, On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle, Geochem. Geophys. Geosyst., Vol. 12(7), DOI:10.1029/2011GC003665.

Tateno, S., K. Hirose, N. Sata, and Y. Ohishi, 2009, Determination of post-perovskite phase transition boundary up to 4400K and implications for thermal structure in D’’ layer, EPSL, Vol. 277 (1-2), 130-136.

Thomas, C., Garnero, E. J., Lay, T., 2004, High-resolution imaging of lowermost mantle structure under the Cocos plate, J. Geophys. Res., Vol. 109, B08307, doi:10.1029/2004JB003013.

Thomas, C., Kendall, J. & Lowman, 2004, J. Earth Planet. Sci. Lett. 225, 105–113.

Thorne, M. S., E. J. Garnero, and S. P. Grand, 2004, Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients, Phys. Earth Planet. Inter., 146, 47–63, doi:10.1016/j.pepi.2003.09.026.

Tkalčić, H., Romanowicz, B., Houy, N., 2002, Constraints on D″ structure using PKP(AB–DF), PKP(BC–DF) and PcP–P traveltime data from broad-band records, Geophys. J. Int., Vol. 149, No. 3, pp. 599–616, doi:10.1046/j.1365-246X.2002.01603.x.

To, A., Romanowicz, B., 2009, Finite-frequency effects on global S diffracted traveltimes, Geophys. J. Int., Vol. 179, pp. 1645-1657, doi:10.1111/j.1365-246X.2009.04359.x.

To, A., B. Romanowicz, Y. Capdeville, and N. Takeuchi, 2005, 3D effects of sharp boundaries at the borders of the African and Pacific superplumes: Observation and modeling, Earth Planet. Sci. Lett., 233, 137–153, doi:10.1016/j.epsl.2005.01.037.

Tschauner, O., C. Ma, J. R. Beckett, C. Prescher, V. B. Prapenka, and G. R. Rossman, 2012. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite, Science, 28, November 2014: Vol. 346 no. 6213, pp. 1100-1102, DOI: 10.1126/science.1259369.

Tromp. J., Komatitsch, D., Hjorleifsdottir, V., Liu, Q., Zhu, H., Peter, D., Bozdag, E., McRitchie, D., Friberg, P., Trabant, C., Hutko, A., 2010, Near real-time simulations of global CMT earthquakes, Geophys. J. Int., 183.

Tucker, R.D., Peters, S.G., Roig, J.Y., Théveniaut, H., Delor, C., 2012. Notice explicative des cartes géologique et métallogéniques de la République de Madagascar à 1/1,000,000. Ministère des Mines, PGRM, Antananarivo, République de Madagascar.

Valenzuela, R. W., and M. E. Wysession, 1997, Lateral and radial velocity structure of the lowermost mantle from diffracted shear waves, in New Images of the Earth's Interior through Long-term Ocean-floor Observations, ed. by Y. Fukao, Y. Hamono, K. Suyehiro, and R. Geller, Kazusa Akademia Center, Japan, pp. 158-162.

Valenzuela, R. W., and M. E. Wysession, 1998, Illuminating the core-mantle boundary with diffracted waves, in The Core-Mantle Boundary Region, ed. by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, AGU, Washington, D.C, pp. 57-71.

Van der Hilst, R.D., De Hoop. M.V., Wang, S.-H. Shim, L. Tenorio, and P. Ma,2007, Seismo-stratigraphy and thermal structure of Earth's core-mantle boundary region,Science, vol. 315, p. 1813-1817.

Vanacore, E., F. Niu, and Y. Ma, 2010, Large angle reflection from a dipping structure recorded as a PKIKP precursor: Evidence for a low velocity zone at the core–mantle boundary beneath the Gulf of Mexico, Earth Planet. Sci. Lett., Vol. 293, 54-62.

Wang, Y., and L. Wen, 2007, Geometry and P- and S- velocity structure of the “African anomaly,”J. Geophys. Res., 112, B05313, doi:10.1029/2006JB004483.

Weber, M., 1994, Lamellae in D"? An alternative model for lower mantle anomalies, Geophys. Res. Lett., 21, 2531-2534.

White, W. M., 2010, Oceanic island basalts and mantle plumes: The geochemical perspective, Ann. Rev. of Geophys., Vol. 38, 133-160.

Wicks, J. K., J. M. Jackson, and W. Sturhan, Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region, Geophys. Res. Lett., Vol. 37(15), DOI:10.1029/2010GL043689.

Wysession, M. E., 1996a, Large-scale structure at the core-mantle boundary from diffracted waves, Nature, Vol. 382, pp. 244-248

Wysession, M. E.,1996b, Imaging cold rock at the base of the mantle: The sometimes fate of Slabs?, in Subduction: Top to Bottom, edited by G. E. Bebout, D. Scholl, S. Kirby, and J. P. Platt, AGU, Washington, D. C., pp. 369-384.

Wysession, M. E., 1996c, How well do we utilize global seismicity?, Bull. Seismol. Soc. Am., 86, 1207-1219.

Wysession, M. E., 2014, The Next Generation Science Standards: A Potential Revolution for Geoscience Education, Earth’s Future, 9 MAY 2014, DOI:10.1002/2014EF000237, 1-4.

Wysession, M. E., Okal, E. A., 1988, Evidence for lateral heterogeneity at the core-mantle bouandary from the slowness of diffracted S profiles, in Structure and Dynamics of Earth’s Deep Interior, Geophys. Monogr. Ser., Vol. 46, edited by D.E. Smylie & R. Hide, pp. 55-63, AGU, Washington, D.C.

Wysession, M. E., Okal, E. A., 1989, Regional analysis of D” velocities from the ray parameters of diffracted P profiles, Geophys. Res. Lett., Vol. 16, No. 12, pp. 1417-1420.

Wysession, M. E., Okal, E. A., Bina, C. R., 1992, The structure of the core-mantle boundary from diffracted waves, J. Geophys. Res., Vol. 97, No. B6, pp. 8749-8764.

Wysession, M. E., and Rowan, L., Geoscience serving public policy, in Bickford, M.E., ed., The Impact of the Geological Sciences on Society: Geological Society of America Special Paper 501, 165-187, 2013.

Wysession, M. E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E. J., Jeanloz, R., Kellogg, L. H., 1998, The D” discontinuity and its implications, in The Core-Mantle Boundary Region, Geodyn. Ser., Vol. 28, edited by M. Gurnis, M.E. Wysession, E. Knittle, & B.A. Buffett, pp. 273-297, AGU, Washington, D.C.

Wysession, M. E., G. I. Aleqabi, M. J. Pratt, P. Shore, D. A. Wiens, A. Nyblade, G. Rambolamana, F. Sy Tanjona Andriampenomanana, and T. Rakotondraibe, 2014, The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar, Abstract at 2014 Fall Meeting, AGU, San Francisco, Calif., submitted.

Wysession, M.E., D. Frank, and S. Yancopoulis,2004, 2006, 2008, 2009, 2011, 2013, Physical Science: Concepts in Action, Prentice-Hall, 925 pp.

Xu, Y., and K. D. Koper, 2009, Detection of a ULVZ at the base of the mantle beneath the northwest Pacific, Geophys. Res. Lett., Vol. 36(17), DOI:10.1029/2009GL039387.

Zhang, N., and S. Zhong, 2011, Heat fluxes at the Earth's surface and core–mantle boundary since Pangea formation and their implications for the geomagnetic superchrons, EPSL, Vol. 306(3-4), 205-216.

Zhang, Y., J. Ritsema, and M. S. Thorne, 2009, Modeling the ratios of SKKS and SKS amplitudes with ultra-low velocity zones at the core-mantle boundary, Geophys. Res. Lett., Vol. 36(19), DOI:10.1029/2009GL040030.

Zhong, S., A. McNamara, E. Tan, L. Moresi, and M. Gurnis, 2008, A benchmark study on mantle convection in a 3-D spherical shell using CitcomS, Geochem. Geophys. Geosyst., 9, Q10017, doi:10.1029/2008GC002048.

Zhao, L., Chevrot, S., 2011, An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography: ii- numerical results, Geophys. J. Int., Vol. 185, pp. 939-954, doi:10.1111/j.1365-246X.2011.04984.x.

1