Table S1strains and Constructs Used in This Study

Table S1strains and Constructs Used in This Study

Table S1Strains and constructs used in this study.

E. coli
Name / Description / Reference
E.coli S17-1λpir / Tpr, Smr, recA, thi, hsdR–M+, RP4::2-Tc::Mu::Km::Tn7, λpir lysogen / Simon et al 1983
E.coli OP50 / Uracil auxotroph / Brenner 1974
E.coli Transformax EPI300 / F-mcrAΔ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15ΔlacX74 recA1 endA1 araD139Δ(ara, leu)7697 galUgalKλ-rpsLnupG / EPICENTRE Biotechnologies, Madison, USA
Vectors and Constructs
Name / Description / Reference
pLAFR6 / Cosmid pLAFR1 with trp terminators flanking MCS; Tcr / Huynh et al 1989
pTn5gfplux / Mini-Tn5 transposon-carrying suicide plasmid (de Lorenzo et al., 1990) containing gfp::luxABCDE reporter cartridge; Kmr, Apr / P.Hill;Fones et al 2010
pRK2013 / Helper strain for triparental mating; Kmr / Figurski and Helinski 1979
pME3258 / Broad host range vector containinggacS from P.protegensCHA0; Tcr / Zuber et al 2003
pUIC3 / Tra–, Mob+, R6K replicon; Tcr / Rainey 1999
pRK415 / Broad host range vector, Tcr / Keen et al 1988
pCR2.1 / PCR cloning vector, Kmr / Invitrogen, UK
pJET1.2 / PCR cloning vector, Apr / Fermentas
pMQ83 / Source of sacB gene / Shanks et al 2006
pCC1FOS / Fosmid vector, Cmr / Epicentre Biotechnologies, USA
pLAF4EDB / pLAFR6 containing NZI7 EDB cluster ORFs 1-12; Tcr / This study
pFOS_6h8 / Fosmid containing the EDB gene cluster, intermediate in construction of pLAF4EDB; Cmr / This study
pEDB_DIS1 / Construct to disrupt the NZI7 EDB gene cluster by insertion of nptII gene into 1st ORF; Tcr / This study
pGACKOF2 / Construct to delete the NZI7 gacS gene / This study
pEDBORF1KO / Construct to delete EDB ORF1, Tcr / This study
pEDBORF1-12KO / Construct to delete EDB ORF1-12, Tcr / This study
pEDBORF9-12KO / Construct to delete EDB ORF9-12, Tcr / This study
pDAPGKO / Construct to delete DAPG biosynthetic locus, Tcr / P. Frey-Klett, in preparation
Selected NZI7 transposon mutants
Name / ORF interrupted / Source
5E3 / Non-ribosomal peptide synthetase required for biosynthesis of tolaasin-like toxin TOL / This study
11G5 / thiG / This study
21A6 / gacS / This study
50C11 / anthranilate synthase / This study
54G10 / EDB ORF 8 / This study
64D2 / hcnB / This study
91G1 / chorismate synthase / This study
79G1 / EDB ORF 1 / This study
Pseudomonas
Name / Description / Source
P. gingeri NCPPB3146 / Mushroom pathogen / NCPPB
P. fluorescens NZI7 / Mushroom pathogen / Godfrey et al 2001b
Other ‘NZ’ strains / Mushroom pathogens / Godfrey et al 2001a; S. Godfrey, unpublished
P.chlororaphis PCL1391 / Biocontrol strain / Chin-A-Woeng et al 1998
P. aeruginosa PA01 / Opportunisitic human pathogen / Stover et al 2000
P. aeruginosa PA14 / Opportunisitic human pathogen / Lee et al 2006
P. entomophila L48 / Drosophila pathogen / Vodovar et al 2006
P. fluorescens PfO-1 / Soil bacterium / Silby et al 2009
P. protegens Pf-5 / Biocontrol strain (formerly P. fluorescensPf-5) / Paulsen et al 2005
P. fluorescens SBW25 / Soil bacterium/biocontrol strain / Bailey et al 1995
P. fluorescens EJP115 / Mycorrhiza helper bacterium / Bending et al 2002
P. fluorescens EJP116 / Mycorrhiza helper bacterium / Bending et al 2002
P. fluorescens BBc6r8 / Mycorrhiza helper bacterium / Collignon and Dexheimer 1994
P. fluorescens WCS365 / Biocontrol strain / Simons et al 1996
P. fluorescens WCS417 / Biocontrol strain / Leeman et al 1995
P. fluorescens WCS374 / Biocontrol strain / Leeman et al 1995
P. fluorescens OE28.3 / Soil bacterium / de Mot and Vanderleyden 1991
P. fluorescens F113 / Biocontrol strain / Shanahan et al 1992
P. fluorescens WH6 / Herbicidal activity / Kimbrel et al 2010
P. marginalis CTA23 / Plant pathogen (soft rot) / Godfrey and Marshall 2002
P. putida KT2440 / Soil bacterium / Nelson et al 2002
P. reactans NCPPB 387 / Mushroom pathogen / Mortishire-Smith et al 1991
P. syringae pv. tomato DC3000 / Plant pathogen / Buell et al 2003
P. syringae pv. syringae B728a / Plant pathogen / Feil et al 2005
P. syringae pv. syringaeB301D / Plant pathogen / Gross et al 1984
P. syringae pv. syringae 61 / Plant pathogen / Huang et al 1988
P. syringae pv. phaseolicola 1448A / Plant pathogen / Joardar et al 2005
P. syringae pv. pisi 870A / Plant pathogen / Taylor et al 1989
P. tolaasii NCPPB 2192 / Mushroom pathogen / Zarkower et al 1984
P. tolaasii PMS117S / Mushroom pathogen / Wu et al 1998
P. viridiflava PC006 / Plant pathogen (soft rot) / Godfrey and Marshall 2002
NZI7 mutants
Name / Description / Source
ΔgacS / Deletion of NZI7 gacS gene / This study
ΔEDB_ORF1 / Deletion of NZI7 EDB ORF 1 / This study
ΔEDB_ORF9-12 / Deletion of NZI7 EDB ORFs 9-12 / This study
ΔEDB_ORF1-12 / Deletion of NZI7 EDB ORFs 1-12 / This study
ΔDAPG / Deletion of NZI7 DAPG cluster / P. Frey-Klett, in preparation
64D2_E2 / hcnB transposon mutant 64D2 with EDB mutation introduced using pEDB_DIS1 / This study
ΔgacS_5E3 / Deletion of gacS in 5E3 (tolaasin biosynthesis) transposon mutant / This study
ΔgacS_79G1 / Deletion of gacS in 79G1 (EDB locus) transposon mutant / This study
ΔgacS_54G10 / Deletion of gacS in 54G10 (EDB locus) transposon mutant / This study

References

Bailey MJ, Lilley AK, Thompson IP, Rainey PB, Ellis RJ (1995). Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol Ecol4: 755-763.

Bending G, Poole E, Whipps J, Read D (2002). Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol39: 219-227.

Brenner S (1974). The genetics of Caenorhabditis elegans. Genetics77: 71-94.

Buell C, Joardar V, Lindeberg M, Selengut J, Paulsen I, Gwinn M et al (2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA100: 10181-10186.

Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGF, Schripsema J, Kroon B et al (1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact11: 1069-1077.

Collignon AM, Dexheimer J (1994). Parietal interactions between Pseudomonas fluorescens strain BBc6 and the ectomycorrhizal fungus Laccaria laccata S238. J Trace Microprobe Tech 12: 201-208.

de Mot R, Vanderleyden J (1991). Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Lett81: 323-327.

Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A et al (2005). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA102: 11064-11069.

Figurski DH, Helinski DR (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA76: 1648-1652.

Fones H, Davis CAR, Rico A, Fang F, Smith JAC, Preston GM (2010). Metal hyperaccumulation armors plants against disease. PLoS Pathogens6: e1001093.

Godfrey S, Harrow S, Marshall J, Klena J (2001a). Characterization by 16S rRNA sequence analysis of pseudomonads causing blotch disease of cultivated Agaricus bisporus. Appl Env Microbiol67: 4316-4323.

Godfrey S, Marshall J, Klena J (2001b). Genetic characterization of Pseudomonas NZ17 - a novel pathogen that results in a brown blotch disease of Agaricus bisporus. J Appl Microbiol91: 412-420.

Godfrey SAC, Marshall JW (2002). Identification of cold-tolerant Pseudomonas viridiflava and P.marginalis causing severe carrot postharvest bacterial soft rot during refrigerated export from New Zealand. Plant Pathol51: 155-162.

Gross DC, Cody YS, Proebsting EL, Radamaker GK, Spotts RA (1984). Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous fruit tree orchards. Phytopathol 74: 241-248.

Huang HC, Schuurink R, Denny TP, Atkinson MM, Baker CJ, Yucel I et al (1988). Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol170: 4748-4756.

Huynh TV, Dahlbeck D, Staskawicz BJ (1989). Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science245: 1374-1377.

Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM et al (2005). Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187: 6488-6498.

Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988). Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene70: 191-197.

Kimbrel, J., S. Givan, et al. (2010). An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6. BMC Genomics11: 522.

Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S et al (2006). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol7: R90.

Leeman M, Vanpelt JA, Denouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995). Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium-wilt, using a novel bioassay. Eur J Plant Pathol101: 655-664.

Mortishire-Smith R, Nutkins J, Packman L, Brodey C, Rainey P, Johnstone K et al (1991). Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactansTetrahedron47: 3645-3654.

Nelson K, Weinel C, Paulsen I, Dodson R, Hilbert H, dos Santos V et al (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Env Microbiol4: 799-808.

Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV et al (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnol23: 873-878.

Rainey P (1999). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Env Microbiol1: 243-257.

Shanahan P, Osullivan DJ, Simpson P, Glennon JD, Ogara F (1992). Isolation of 2,4-diacetylphloroglucinol from a fluorescent Pseudomonad and investigation of physiological parameters influencing its production. Appl Env Microbiol58: 353-358.

Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA (2006). Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Env Microbiol72: 5027-5036.

Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM et al (2009). Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol10: R51.

Simon R, Priefer U, Puhler A (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nature Biotechnol1: 784-791.

Simons M, vanderBij AJ, Brand I, deWeger LA, Wijffelman CA, Lugtenberg BJJ (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact9: 600-607.

Stover C, Pham X, Erwin A, Mizoguchi S, Warrener P, Hickey M et al (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406: 959-964.

Taylor, J. D., J. R. Bevan, et al. (1989). Genetic relationship between races of Pseudomonas syringae pathovar pisi and cultivars of Pisum sativum.Plant Pathol38: 364-375.

Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C et al (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnol24: 673-679.

Wu R, Palmer B, Cole A (1998). Phenotypic variation and survival of genetically marked Pseudomonas tolaasii in mushroom compost. Can J Microbiol44: 373-377.

Zarkower PA, Wuest PJ, Royse DJ, Myers B (1984). Phenotypic traits of fluorescent pseudomonads causing bacterial blotch of Agaricus bisporus mushrooms and other mushroom-derived fluorescent Pseudomonads. Can J Microbiol30: 360-367.

Zuber S, Carruthers F, Keel C, Mattart A, Blumer C, Pessi G et al (2003). GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact16: 634-644.