Algebra IIMs.Lanci

Final Review Quizzes

There are 10 weeks left of school. At the beginning of every week you will be handed a quiz paper with 5 practice final questions. They are due the Friday of that week. IF YOUR CLASS DROPS ON A FRIDAY, THE ASSIGNMENT WILL BE DUE ON THE THURSDAY. Each quiz will be worth 10 points, for a total of 100 points for the 4th quarter. This assignment is mean to help you; however failing to complete the quiz each week will give you a zero on a test for the 4th quarter.

Quiz 2: Answer all questions on loose-leaf (with your name on it)

This assignment is due______

1.Simplify the complex fraction:

2. Solve the following equation and express the roots in simplest a + bi form.

3. Solve the following absolute value inequality and graph the solution set on the real number line:

4. Factor the following expression completely:.

5. Write in simplest form:.

Algebra II: Review SheetTrigonometric Functions

A) Find θ to the nearest second.B) Find the value of x to 4 decimal places

1.) tanθ = .74651.)

2.) cosθ = .57722.)

3.) sinθ = .32133.)

4.) tanθ = 1.23454.)

C) Find x to the nearest tenth. (All angle measures in degrees/minutes/seconds)

1.) 2.) 3.) 4.) 5.) x

5 x 9 12 x9 25 6

17 x 2016

6312

D) Find sinθ, cosθ, tanθ, cscθ, secθ, cotθ (Write the formulas)

1.)2.)

5 6 √85

3

θ θ

4 7

E) Name the quadrant in which the terminal side of lies.

1.) sinθ >0 and cotθ >02.) cscθ <0 and secθ < 0

3.) cosθ <0 and sinθ >04.) tanθ <0 and secθ <0

F) Solve for x.

1.) sin(x + 20) = cos(4x + 5) 2.) csc(2x – 8)=sec(4x + 38) 3.) tan 4x = cot 70

G) Write the following expressions as functions of acute angles whose measure is less than .

1.) cos2.) sec3.) tan4.) sin

H) Given the following points located on the unit circle, find sinθ, cosθ, tanθ, cscθ, secθ, cotθ.

1.) (8, -15)2.) 3.)

I) Sketch the angle and determine the quadrant in which the terminal side lies.

1.) 2.) 3.) 4.) 5.) 6.)

J) The formula for finding the length of an arc is:

1.) In a circle, the length of a radius is 4cm. Find the length of an arc intercepted by a central angle whose measure is 1.5 radians.

2.) In a circle, a central angle of 4.2 radians intercepts an arc whose length is 6.3 meters. Find the length of a radius in meters.

3.) If = 2.5 and r = 4, find s.

4.) If s = 12 and =6, find r.

K) Change each angle from degrees to radians.

1.) 2.) 3.) 4.) 5.)

L) Change each angle from radians to degrees.

1.)2.) 3.) 4.) 5.)

M) Complete the table below:

θ / / / 60 / 90 / / / 360
Radians / / /
sin θ
cos θ
tan θ
csc θ
sec θ
cot θ

N) Express each function as a function of a positive acute angle.

1. cos 2. sin 3.csc 4. cot 5. tan(-115) 6. sec

O) Find the exact value of the function.

1. cos2. sin3. tan4. cos5. sin

6. cos7. tan8. sin9. tan10. cos