BOOKS
[1] A. Akansu and R. Haddad. Multiresolution Signal Decomposition. Academic Press, 1993.
[2] A. Akansu and M.J. Smith, editors. Subband and Wavelet Transforms. Kluwer, 1995.
[3] A. Aldroubi and M. Unser, editors. Wavelets in Medicine and Biology. CRC Press, 1996.
[4] A. Antoniadis and G. Oppenheim, editors. Wavelets and Statistics. Springer, 1995.
[5]A.Arneodo,F.Argoul,E.Bacry,J.Elezgaray,andJ.F.Muzy. Ondelettes, Multifractales etTurbulences. Diderot editeur, Paris, 1995.
[6] M. Barlaud, editor. Wavelets in Image Communication. Elsevier. 1995.
[7] M. F.Barnsley and L. P.Hurd. Fractal Image Compression. A.K.Peters, Wellesley, MA, 1993.
[8] J. J. Benedetto and M. W.Frazief, editors. Wavelets. Mathematics and Applications. CRCPress, Boca Raton, Ann Arbor, London, Tokyo, 1994.
[9] S. M. Berman. Sojournes and Extremes of Stochastic Processes. Wadsworth. Reading, MA,1989.
[10] B. Boashash, editor Time-frequency Signal Analysis. Wiley Halsted Press, 1992.
[11] C. S. Burrus and T.W.Parks. DFT/FFT and Convolution Algorithms: Theory and Implementation. John Wiley and Sons, New York, 1985.
[12] M. Cannone. Ondelettes, Paraproduits et Navier-Stokes. Diderot, Paris. 1995.
[13] W.K.Chen. Passive and Active Filters. John Wiley and Sons, New York, 1986.
[14] C. K. Chui. An Introduction to Wavelets. Academic Press, New York, 1992.
[15] C. K. Chui, editor. Wavelets: A Tutorial in Theory and Applications. Academic Press. NewYork. 1992.
[16] A. Cohen. Wavelets and Multiscale Signal Processing. Chapman and Hall, 1995.
[17] J. M. Combes, A. Grossmann, and P.Tchamitchian, editors. Wavelets time-frequency methodsand phase space. Springer-Verlag, Berlin, 1989.
[18] T.M. Cover and J. A. Thomas. Elements of Information Theory Wiley Interscience, 1991.
[l9] I. Daubechies.Ten Lectures on Wavelets. SIAM, Philadelphia, PA,l992.
[20] R. DeVore and G. Lorentz. Constructive Approximation, volume 303 of Comprehensive Studiesin Mathematics. Springer-Verlag, l993.
[21] D. E. Dudgeon and R. M. Mersereau. Multidimensional DigitaI Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, l984.
[22] H.Dym and H.P.McKean. Fourier Series and Integrals. Academic Press, New York, 1972.
[23] F. Feder. Fractals. Pergamon, New York, l988.
[24] P. Flandrin. Temps-Fréquence. Hermes, Paris, 1993.
[25] A. Gersho and R.M. Gray. Vector Quantization and Signal CompressiOn. Kluwer AcadcmicPublishers, Boston, l992.
[26] P.E. Gill, W. Murray, and M.H.Wright. Numerical Linear-Algebra and Optimization. AddisonWesley. Redwood City, CA, 199l.
[27] G.H.Golub and C.F.Van Loan. Matrix Computations. Johns Hopkins Univ. Press, l989.
[28] E.Hernández and G.Weiss. A First Course on Wavelets. CRC Press, New York, l996.
[29] B.Burke Hubbard. The World According to Wavelets. A K Peters, Wellesley,MA, l996.
[30] S.Jaffard and Y.Meyer. Wavelet Methods for Pointwise Regularity and Locall Oscillations ofFunctions, volume l23. American Mathematical Society, Providence, RI, l996.
[3l] A.K.Jain. Fundamentals of DigitaI Image Processing. Prentice-Hal1, Englewood Cliffs, NJ,l989.
[32] N.J.Jayant and P.Noll. DigitaI Coding of Waveforms. Prentice-Hall, Englewood-Cliffs, NJ,1984.
[33] F.John. Partial Differential Equations. Springer-Verlag, New York, l975.
[34] G.Kaiser. A Friendly Guide to Wavelets. Birkhäuser, l994.
[35] G.Kamizsa. Organization in Vision. Praeger Scientific, New York. 1979.
[36] S.M.Kay. Fundamentals of Statistical Signal Processing. Prentice-Hall, Englewood Cliffs,1993.
[37] P.G.Lemarié, editor. Les Ondelettes en 1989. Lecture Notes in Mathematics no. l438.Springer-Verlag, Berlin, l990.
[38] H.S.Malvar. Signal Processing with Lapped Transforms. Artech House, Norwood, MA,1992
[39] B.B.Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman and Co., San Fransisco,1982.
[40] D.Marr.Vision. W.H. Freeman and Co., San Fransisco, 1982.
[41] A.W.Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press. Boston, l979.
[42] Y.Meyer, Ondelettes et Algorithmes Concurrents. Hermann, Paris, 1992.
[43] Y.Meyer. Wavelets and Operators. Advanced mathematics. Cambridge university press, 1992.
[44] Y.Meyer. Wavelets: Algorithms and Applications. SIAM, l993. Translated and revised byR.D.Ryan.
[45] Y.Meyer. Wavelets, Vibrations and Scalings. CRM, Université de Montréal, Montréal, l997.
[46] Y.Meyer.and S. Roques, editors. Progress in Wavelet Analysis and Applications. Frontières,1993.
[47] H.J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag,Berlin, 1982.
[48] A.V.Oppenheim, A.S.Willsky, and I.T.Young. Signals and Systems. Prentice-Hall, EnglewoodCliffS, NJ, 1997.
[49] A.V.Oppenheim and R.W. Shafer. Discrete-Time Signal Processing. Prentice-Hall, EnglewoodCliffs, NJ, l989.
[50] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill. NewYork, NY second edition, l984.
[51] A. Papoulis. The Fourier Integral and its Applications. McGraw-Hill, New York, NY secondedition, l987.
[52] A. Papoulis. Signal Analysis. McGraw-HilI. New York, NY 1988.
[53] B. Porat. Digital Processing of Random Signals: Theory and Method. Prentice-Hall, EnglewoodCliffs, NJ, l994.
[54] M. B' Priestley. Spectral Analysis and Time Series. Academic Press, Boston, l981.
[55]. L. R. Rabiner and R. W Shafer. Digital Signal Processing of Speech Signals. Englewood Cliffs.NJ, l978.
[56] A' Rosenfeld, editor. Multiresolution Techniques in Computer Vision. Springer-Verlag, NewYork, l984.
[57] W Rudin. Real and Complex Analysis. Mc Graw Hill. 1987.
[58] M. B. Ruskai et al., editor. Wavelets and their Applications. Jones and Bartlett, Boston. 1992.
[59] D. J. Sakrison. Communication Theory: Transmission of Waveforms and Digital Information.John Wiley, New York, 1968.
[60] L. Schwartz. Theorie Des Distributions. Hermann, Paris, l970.
[61] J. J. Slotine and W. Li. Applied Nonlinear Control. Prenticc-HaIl, Englewood Cliffs, NJ, l991.
[62] G. Strang and T.Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, Boston,1996.
[63] R. Strichartz. A Guide to Distribution Theory and Fourier Transforms. CRC Press, Boca Raton,1994.
[64] B. Torrésani. Analyse Continue par Ondelettes. CNRS Editions, Paris, l995.
[65] H. Triebel. Theory of Function Spaces. Birkhäuser Verlag. Boston, 1992.
[66] P.P.Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, Englewood Cliffs, NJ.1993.
[67] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs,NJ, 1995.
[68] H. Weyl. The Theory of Groups and Quantum Mechanics. Dutton, New York, l93l.
[69] M. V.Wickerhauser. Adapted Wavelet Analysis from Theory to Software. AK Peters, l994.
[70] J. W.Woods, editor. Subband Image Coding. Kluwer, Boston, MA, l99l.
[71] G. W.Wornell. Signal Processing with Fractals: A Wavelet-Based Approach. Prentice-Hall,1995.
ARTlCLES
[72] E. H. Adelson, E. Simoncelli, and R. Hingorani. Orthogonal pyramid transforms for imagecoding. In Proc. SPIE, volume 845, pages 50--58, Cambridge, MA. October l987.
[73] A. N. Akansu, R. A. Haddad, and H. Caglar. The binomial QMF-wavelet transform formultiresolution signal decomposition. IEEE Trans. on Signal Processing, SP-40, l992.
[74] A. Aldroubi and H. Feichtinger. Complete iterative reconstruction algorithms for irregularlysampled data in spline-like spaces. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Proc.,Munich, Germany. April l997.
[75] A. Aldroubi and M. Unser. Families of multiresolution and wavelet spaces with optimal properties. Number, Functional Anal. and Optimization,14:417-446,1993.
[76] J. Aloilnonos and A. Rosenfeld. Computer vision. Science, 253:1249--l253, 199l.
[77] P.Anandan. A computational framework and an algorithm for the measurement of visualmotion. Int. J.Comp. Vision, l(2):283--3l0, l989.
[78] R. Ansari and C.GuiIlemont. Exact reconstruction filter banks using diamond FlR filters. InProc. Bilkent lntl. Conf, pages l412--l424, July l990.
[79] M. Antonini. M. Barlaud, P.Mathieu, and I.Daubechies. Image coding using wavelet transform.IEEE Trans. Image Proc., l (2):205--220, April l992.
[80] A. Averbuch, G. Aharoni, R. Coifman, and M.Israeli. Local cosine transform - a method forthe reduction of the blocking effect in JPEG. J. of Mith. Imaging and Vision, 3:7--38, l993.
[8l] A. Averbuch, D. Lazar, and M. Israeli. lmage compression using wavelet decomposition. IEEETrans. Image Proc., 5(1 ):4--l5, l996.
[82] P.M. Aziz, H. V.Sorensen, and J.Van Der Spiegel. An overview of sigma-delta converters.IEEE Sig. Proc. Mag., l 3(l ):61 -84, January l996.
[83] E.Bacry, J.F Muzy, and A. Arneodo. Singularity spectrum of fractal signals: exact results. J.of Stat. Phys., 70(3/4):635--674, 1993.
[84] Z.Baharav, H.Krupnik, D.Malah, and E.Karnin. A multi-resolution framework for fractalimage reDresentation and its applications. Technical report, Electr. Eng., Technion, Israel, Haifa,1996.
[85] R. Bajcsy. Computer description of textured surfaces. In JCAI, Stanford, CA, August l973.
[86] R. Balian. Un principle d'incertitude en théorie du signal ou en mécanique quantique. C R.Acad Sci' Paris. 292. l98l. Série 2.
[87] M. Basseville and A. Benveniste A. S. Willsky. Multiscale autoregressive processes: Shur-Levinson parametrizations. IEEE Trans. Signal Proc., l992.
[88] G.Battle. A block spin construction of ondelettes. Part I: Lemarie functions. Comm.. Math.phys., 110:601--615, 1987.
[89] M.Bayram and R. Baraniuk. Multiple window time-frequency analysis. ln Proc. of Time-Freq.and Time-Scale Symp., Paris. July l996.
[90] J. J. Benedetto. Irregular sampling and frames. In C. K. Chui, editor, Wavelets. A Tutorial inTheory and Applications. Academic Press, New York, l992.
[91] J. Berger. R. Coifman. and M. Goldberg. Removing noise from music using local trigonometricbases and wavelet packets. J.Audio Eng. Soci., 42(10):808--8l8, October l994.
[92] Z. Berman and J. S. Baras. Properties of the multiscale maxima and zero-crossings representations. IEEE Trans. Signal Proc., 4l (l2):32l6--3231, December l993.
[93] G. Beylkin, R. Coifman, and V Rokhlin. Fast wavelet transforms and numerical algorithms.Comm. on Pure and Appl. Math., 44: l4l--l83, l99l.
[94] J. M. Bony. Two-microlocalization and propagation of singularities for semilinear hyperbolicequations. In Proc. of Tanaguchi Symp., pages 11-49, HERT Katata, October 1984.
[95] A. C. Bovik, N. Gopal, T. Emmoth, and A. Restrepo. Localized measurement of emergentimage frequencies by Gabor wavelets. IEEE Trans. lnfo. Theory, 38(2):691--712, March l992.
[96] A. C. Bovik, P.Maragos, and T.F.Quatieri. AM-FM energy detection and separation in noiseusing multiband energy operators. IEEE Trans. Signal Proc., 4l (l2):3245--3265, December1993.
[97] K. Brandenburg, G.Stoll, E.Dehery, and J. D. Johnstone. The ISO-MPEG-Audio codec: Ageneric-standard for coding of high quality digital audio. J.Audio Eng. Soc., 42(l0):780--792,October 1994.
[98] C. Brislawn. Fingerprints go digital. Notices of the AMS, 42(11): l278--l283, November 1995.
[99] A. Bruce, D.Donoho, and H. Y. Gao. Wavelet analysis. IEEE Spectrum, pages 26-35, October1996.
[100] J. B. Buckheit and D. L. Donoho. Wavelab and reproducible research. In Wavelets and Statistics,pages 53--8l. Springer-Vrlag, Berlin. 1995. A. Antoniadis and G. Oppenheim eds.
[101] T.Burns, S. Rogers, D. Ruck, and M. Oxley. Discrete, spatio-temporal, wavelet multiresolutionanalysis method for computing optimal flow. Optical Eng., 33(7):2236-2247, July 1994.
[102] R.J.Burt. Smart sensing within a pyramid vision machine. Proc. IEEE., 76(8): 1006--1015,August 1988.
[103] P.J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans.Commun., 31(4):532--540, April l983.
[104] C.A. Cabrelli and U. M. Molter. Wavelet transform of the dilation equation. J.of the AustralianMath. Soc., 37, 1996.
[105] A.P.Calder(o)n. Intermediate spaces and interpolation, the complex method. Stud Math..24:113--19O, 1964.
[106] M. Cannon and J. J. Slotine. Space-frequency localized basis function networks for nonlinearsystem estimation and control. Neurocomputing, 9(3), 1995.
[107] J. Canny. A computational approach to edge detection. IEEE Trans. Patt. Recog. and Mach.Intell., 36:961--1005, September 1986.
[108] L. Carleson. On the convergence and growth of partial sums of Fourier series. Acta Math..116:l35--157, 1966.
[109] R. Carmona. Extrema reconstruction and spline smoothing:variations on an algorithm ofMallat and Zhong. In Wavelets and Statistics.Springer-Verlag, Berlin, l995. A.Antoniadis and G.Oppenheim eds.
[110] R. Carmona, W.L.Hwang. and B. Torrésani. Identification of chirps with continuous wavelettransform. ln Wavelets and Statistics, pages 96-108. Springer-Verlag. Berlin. l995. A. Anto-niadis and G. Oppenheim eds.
[111] A. S. Cavaretta, W. Dahmen, and C. Micchelli. Stationary subdivision. Mem. Amer.Math. Soc., 93:1--186, 1991.
[112] S. Chen and D. Donoho. Atomic decomposition by basis pursuit. ln SPlE InternationalConference on Wavelets. San Diego, July 1995.
[113] H. I.Choi and W. J. Williams. Improved time-frequency representation of multicomponentsignals using exponential kernels. IEEE Trans. Acoust., Speech, and Signal Proc.. 37(6):862-87l, l989.
[114] C. K. Chui and X. Shi. Characterization of fundamental scaling functions and wavelets. Approx.Theory and its Appl.,1993.
[115] C. K. Chui and X. Shi. Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J.Math. Anal., 24(1):263--277, January 1993.
[116] C. K. Chui and J. Z. Wang. A cardinal spline approach to wavelets. Proc. Amer. Math. Soc.113:785--793, 1991.
[117] T.C. Claasen and W. F. Mecklenbrauker. The aliasing problem in discrete-time Wignerdistribution. IEEE Trans. Acoust., Speech, and Signal Proc., 31:1067-1072, l983.
[1l8] J. Claerbout. Hypertext documents about reproducible research, l994.
sep
[119] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroir en quadrature. Ann. Inst. H.Poincaré, Anal. Non Linéaire, 7:439-459,1990.
[120] A. Cohen and J. P.Conze. Régularité des bases d'ondelettes et mesures ergodiques. Technicalreport, CEREMADE, Universite Paris Daunhine. 1991.
[121] A. Cohen and I. Daubechies. On the instability of arbitrary biorthogonal wavelet packets. SIAM,J.of Math. Anal. 24(5):1340--1354, 1993.
[122] A. Cohen, I. Daubechies, and J.C. Feauveau.Biorthogonal bases of compactly supportedwavelets. Commun. on Pure and Appl. Math., 45:485--560. 1992.
[123] A.Cohcn, I. Daubechies. and P.Vial. Wavelet bases on the interval and fast algorithms. J. OfAppl. and Comput. Harmonic Analysis, 1:54--8l. 1993.
[124] L. Cohen. Generalized phase-space distribution functions. J.Math. Phys., 7(5):781--786, l966.
[125] L. Cohen. Time-frequency distributions: A review. Proc. IEEE, 77(7):941--981, July l989.
[126] R. R. Coifman and D. Donoho. Translation invariant de-noising. Technical Report 475, Dept.of Statistics, Stanford University, May l995.
[127] R. R. Coifman and Y.Meyer. Remarques sur l'analyse de Fourier a fenêtre. C.R. Acad Sci.,pages 259--261, 1991.
[128] R. R. Coifman, Y.Meyer, and M. V.Wickerhauser. Wavelet analysis and signal processing. InWavelets and their Applications,pages 153--178, Boston, 1992. Jones and Barlett. B. Ruskai etal. eds.
[129] R. R. Coifman and M. V Wickerhauser. Entropy-based algorithms for best basis selection.IEEE Trans. Info. Theow, 38(2):7l3--7l8, March l992.
[130] A. Croisier. D. Esteban, and C. Galand. Perfect channeI splitting by use of interpolation/decimation/tree decomposition techniques. In Int. Conf on Info. Sciences and Systems, pages443-446, Patras, Greece, August l976.
[131] Z. Cvetkovic and M. Vetterli. Consistent reconstruction of signals from wavelet extrema/zerocrossings representation. IEEE Trans. Signal Proc., March 1995.
[132] R. Dahlhaus. On the Kullback-Leibler information divergence of locally stationary processes.Stoch. Proc. Appl., 1995.
[133] I. Dauhechies. Orthonormal bases of compactly supported wavelets. Commun. on Pure andAppl. Math., 4l:909--996, Novemher 1988.
[134] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEETrans. Info. Theory,. 36(5):961--1005, September 1990.
[135] I. Daubechies. A. Grossmann, and Y.Meyer. Painless nonorthogonal expansions. J. Math.Phys., 27:1271--1283, 1986.
[136] I. Daubechies and J. Lagarias. Two-scale difference equations:IL. Local regularity, infiniteproducts of matrices and fractals. SIAM J. of Math. Anal., 24, l992.
[137] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps, l996. Tech.Rep., Dept. of Mathematics. Princeton University.
[138] J. G. Daugmann.- Two-dimensional spectral analysis of cortical receptive field profile. VisionResearch, 20:847--856, 1980.
[139] G. M. Davis. A wavelet-based analysis of fractal image compression. IEEE Trans. on ImageProc., 1997.
[140] G. M. Davis, S. Mallat. and M. Avelanedo. Greedy adaptive approximations. J. of Constr.Approx., 13:57--98. 1997.
[141] G. M. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions. SPIE J. OfOpt. Engin., 33(7):2183--2191, July 1994.
[142] Y. F. Dehery, M. Lever, and P.Urcum. A.MUSICAM source code for digital audio broadcastingand storage. In Proc. lEEE Int. Conf. Acoust., Speech. and Signal Proc., pages 3605--3608,Toronto, Canada, May 1991.
[143] N. Delprat, B. Escudié, P.Guillemain, R. Kronland-Martinet, P.Tchamitchian, and B.Torresani.Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE. Trans.Info. Theory, 38(2):644--664. March 1992.
[144] G. Deslauriers and S.Dubuc. Symmetric iterative interpolation. Constr. Approx., 5:49--68,1989.
[145] R. A. DeVore, B.Jawerth, and B. J. Lucier. Image compression through wavelet transformcoding. lEEE. Trans. lnfo. Theory, 38(2):7l9--746, March 1992.
[146] R. A. DeVore, B. Jawerth, and V.Popov. ComPression of wavelet decompositions. Americ. J.of Math., 114:737--785, 1992.
[147] R. A. DeVore, G. Kyriazis, and D. Leviatan. Wavelet compression and nonlinear n-widths.Advances in Comput. Math., 1:197--214. 1993.
[148] R. A. DeVore and V.N. Temlyakov. Some remarks on greedy algorithms. Advances in Comput.Math., 5:173--187, 1996.
[149] D. Donoho. Unconditional bases are optimal bases for data compression and for statisticalestimation. J. of Appl. and Comput. Harmonic Analysis. 1:100--115, l993.
[150] D. Donoho. Interpolating wavelet transforms. J. of Appl. and Comput. Harmonic Analysis,1994.
[151] D. Donoho and I. Johnstone. Ideal denoising in an orthonormal basis chosen from a library ofbases. C.R. Acad. Sci. Paris, Série I, 319:1317--1322, 1994.
[152] D. Donoho and I. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika.81:425-455, December 1994.
[153] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. wavelet shrinkage:asymptopia? J.of Royal Stat. Soc. B., 57(2):301 --369, 1995.
[154] D. Donoho, S. Mallat, and R. von Sachs. Estimating covariances of locally stationary processes:consistency of best basis methods. ln Proc. of Time-Freq. and Time-Scale Symp., Paris. July 1996.
[155] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math.Soc., 72:341--366, 1952.
[156] P.Duhamel, Y.Mahieux. and J. Petit. A fast algorithm for the implementation of filter banksbased on timc domain aliasing cancellation. In Proc. lEEE. Int. Conf Acoust., Speech. AndSignal Proc., pages 2209--2212, Toronto, Canada, May 1991.
[157] P.Duhamel and M. Vetterli. Fast Fourier transfoms: a tutorial review and a state of the art.Signal Proc., l9(4):259--299, April 1990.
[158] N. Dyn and S. Rippa. Data-dependent triangulations for scattered data interpolation and finiteelement approximation. Applied Num. Math., 12:89--105. 1993.
[159] M. Farge and M. Holschneider. lnterpretation of two-dimensional turbulence spectrum in termsof singularity in the vortex cores. Europhys. Lett., 15(7):737--743, 1990.
[160] M. Farge, N. Kevlahan, V.Perrier, and E. Goirand. Wavelets and turbulence. Proc. IEEE,84(4):639--669, April 1996.
[161] P. Flandrin. wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Info.Theory, 38(2):910--916, March 1992.
[162] M. Frazier and B. Jawerth. Decomposition of Besov spaces. Indiana Uiniv. Math. J., 34:777--789,1985.
[163] J. H. Friedman. Multivariate adaptive regression splines. Annals of Stat., 19(1):1--141, 1991.
[164] J. H. Friedman and W. Stuetzle. Prniection pursuit regression. J. of Amer Stat. Assoc., 76:817-823, 1981.
[165] U. Frisch and G. Parisi. Turbrlence and predictability in geophysical.fluid dynanics and climatedynamics, chapter Fully developed turbulence and intermittency, page 84. North-Holland.Amsterdam, l985. M. Ghil, R.Benzi, and G. Parisi, eds.
[166] J. Froment and S. Mallat. Second generation compact image coding with wavelets. In C. K.Chui, editor, Wavelets: A Tutorial in Theory and Applications. Acadcmic Press. New York,1992.
[167] D. Gabor. Theory of comunication. J. IEE, 93:429-457, 1946.
[168] H.Y.Gao. Wavelet estimation of spectral densities in time series analysis. PhD. thesis. Universityof California, Berkeley, 1993.
[169] D. Geiger and K. Kumaran. Visual organization of illusory surfaces. In 4th European Conf.inComp. Vision, Cambridge, UK, 1996.
[170] J. Geronimo. D. Hardin, and P.R. Massupust. Fractal functions and wavelet expansions basedon several functions. J. of Approx. Theory, 78:373-401, 1994.
[171] P.Goupillaud, A. Grossman, and J. Morlet. Cycle-octave and related transforms in seismicsignal analysis. Geoexploration, 23:85--102, 1984/85. Elsevier Science Pub.
[172] V.Goyal, M. Vetterli, and T.Nugyen. Quantization of overcomplete expansions. In Proc. DataCompression Conf., 1995.
[173] R.M. Gray. Quantization noise spectra. lEEE Trans. Info. Theory, pages 1220--1240, June1990.
[174] R. Gribonval, P.Depalle, X. Rodet, E. Bacry, and S. Mallat. Sound signals decomposition usinga high resolution matching pursuit. In Proc. Int. Computer Music Conf. (ICMC'96). Pages293--296, August 1996.
[175] W. Grimson. ComputationaI experiments with a feature based stereo algorithm. IEEE Trans.Patt. Recog. and Mach. Intell., 7:17--34, January 1985.
[176] K. Gröchenig. NATO ASI 1991 on Probabilistic and Stochastic Methods in Analysis andApplications, chapter Sharp results on random sampling of band-limited function. Kluwer,1992. J.S. Byrnes ed.
[177] K. Gröchenig. Acceleration of the frame algorithm. IEEE Trans. Signal Proc., 41(12):3331-3340, December 1993.
[178] K. Gröchenig. Iregular sampling of wavelet and short-time Fourier transforms. Constr. Approx.,9:283--297, 1993.
[179] A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable waveletsof constant shape. SIAM J. of Math. Anal., 15(4):723--736, July 1984.
[180] P.Guillemain and R. Kronland-Martinet. Characterization of acoustic signals through continuous 1inear time-frequency representations. Proc. IEEE, 84(2):561--585, April 1996.
[181] A. Haar. Zur theorie der orthogonalen funktionensysteme. Math. Annal., 69:331--371, 1910.
[182] T.Halsey, M. Jensen, L. Kadanoff, l. Procaccia, and B. Shraiman. Fractal measures and theirsingularities: The characterization of strange sets. Phys. Rev A, 33(2):1141--1151, 1986.
[183] F.J. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform.Proc. IEEE, pages 11--33, January 1978.
[184] D. M. Healy and J. B. Weaver Two applications of wavelet transforms in magnetic resonanceimaging. IEEE Trans. Info. Theory, 38(2):840--860, March 1992.
[185] C. Heil and D. Walnut. Continuous and discrete wavelet transforms. SIAM Rev., 31:628--666,1989.
[186] C. Herley, J. Kova(c)evi(c), K. Ramchandran, and M. Vetterli. Tilings of the time--frequency plane:construction of arbitrary orthogonal bases and fast tiling algorithms. IEEE Trans. Signal Proc.,41(12):3341--3359, December 1993.