Supplementary Material (Sanderlin et al. “On Valuing Patches: Estimating Contributions to Metapopulation Growth with Reverse-time Capture-recapture Modeling”)
Table S1. Seniority model averaged parameter estimates (SE) inhigh density years from the kangaroo rat metapopulation reverse-time analysis in SE Arizona, USA. We include population of origin (origin), outside system immigrants (im) and the focal populations (focal) for juveniles (juv) and adults (ad).
origin / focal1, 2juv / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8
1 / 0.323 (0.066) / 0.001 (0.001) / 0.000 (0.000) / 0.000 (0.000) / <0.001** / 0.000 (0.000) / 0.007 (0.006) / 0.000 (0.000)
2 / 0.001 (0.001) / 0.323 (0.066) / 0.000 (0.000) / <0.001* / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.002 (0.002)
3 / 0.000 (0.000) / 0.000 (0.000) / 0.306 (0.060) / 0.002 (0.002) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.002 (0.002)
4 / 0.000 (0.000) / <0.001* / 0.002 (0.002) / 0.306 (0.060) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / <0.001**
5 / <0.001** / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.306 (0.060) / <0.001** / 0.007 (0.006) / 0.000 (0.000)
6 / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / <0.001** / 0.306 (0.060) / 0.007 (0.006) / 0.000 (0.000)
7 / 0.004 (0.004) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.007 (0.006) / 0.007 (0.006) / 0.306 (0.060) / 0.000 (0.000)
8 / 0.000 (0.000) / 0.001 (0.001) / 0.002 (0.002) / <0.001** / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.306 (0.060)
ad
1 / 0.424 (0.059) / 0.001 (0.001) / 0.000 (0.000) / 0.000 (0.000) / <0.001** / 0.000 (0.000) / 0.003 (0.003) / 0.000 (0.000)
2 / 0.001 (0.001) / 0.424 (0.059) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.001 (0.001)
3 / 0.000 (0.000) / 0.000 (0.000) / 0.402 (0.043) / 0.001 (0.001) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.001 (0.001)
4 / 0.000 (0.000) / 0.000 (0.000) / 0.001 (0.001) / 0.402 (0.043) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / <0.001**
5 / <0.001* / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.402 (0.043) / <0.001** / 0.003 (0.003) / 0.000 (0.000)
6 / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / <0.001** / 0.402 (0.043) / 0.003 (0.003) / 0.000 (0.000)
7 / 0.002 (0.002) / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.003 (0.003) / 0.003 (0.003) / 0.402 (0.043) / 0.000 (0.000)
8 / 0.000 (0.000) / 0.001 (0.001) / 0.001 (0.001) / <0.001** / 0.000 (0.000) / 0.000 (0.000) / 0.000 (0.000) / 0.402 (0.043)
im / 0.245 (0.059) / 0.249 (0.058) / 0.287 (0.051) / 0.289 (0.051) / 0.283 (0.051) / 0.283 (0.051) / 0.264 (0.055) / 0.287 (0.051)
1 The notation ‘<0.001*’ indicates that the estimate is 0.000 and the SE of the estimate is 0 < x < 0.001.
2 The notation ‘<0.001**’ indicates that both the estimate and SE are 0 < x < 0.001.