COT6602 Quantum Information Theory and Quantum Error Correcting Codes
Credit: 3 units
Offered:Spring semester
Instructors: Dan Marinescu and Pawel Wocjan
Class outline
- Overview of Linear Algebra
 - Entropy and Information
 - The Intuitive Concept of Information
 - The Shannon and Von Neumann Entropy
 - Properties of Entropy and Entropy Inequalities
 - Distinguishing Quantum States and the Accessible Information
 - Distance Measures for Quantum Information
 - Entanglement as a Physical Resource
 - Measurements of Quantum Systems
 - Born’s Rule
 - Measurement Operators
 - von Neumann-type Projective Measurements
 - Positive Operator Valued Measurements
 - Newmark’s Theorem
 - Pure and Mixed States
 - Bipartite Systems; Schmidt Decomposition; Measurements of Bipartite Systems
 - Purification of Mixed States
 - Measurements of Quantum Circuits
 - EPR
 - Bell’s and CHSH Inequalities
 - Applications
 - Quantum Teleportation
 - Superdense Coding
 - Noiseless Quantum Shannon Theory
 - Classical and Quantum Data Compression
 - Quantum-Classical Trade-Off Coding
 - RemoteState Preparation
 - Generalized RemoteState Preparation
 - Noisy Quantum Shannon Theory
 - Shannon's Noisy Channel Coding Theorem
 - Classical Information Transmission over Noisy Quantum Channels
 - Entanglement Assisted Quantum Communication (The Mother Protocol)
 - Quantum Information Transmission over Noisy Quantum Channels
 - Entanglement Assisted Classical Information Transmission over Noisy Quantum Channels
 - Entanglement Distillation Assisted by Quantum Communication (The Father Protocol)
 - Entanglement Distillation Assisted by Classical Communication
 - Noisy Teleportation
 - Noisy Superdense Coding
 - The Fully Quantum Slepian-Wolf Theorem (FQSW)
 - State Merging and the Operation Meaning of Conditional Entropy
 - Distributed Quantum Source Compression
 - Introduction to Classical Error Correction
 - Block codes
 - Hamming distance
 - Linear Codes
 - Bounds (Hamming, Singleton, Gilbert-Varsharmov, Plotkin, BCH)
 - Quantum Error Correction
 - A Necessary Condition for the Existence of a Quantum Code
 - Quantum Hamming Bound
 - Repetitive Codes for a Single Bit-Flip/Phase-Flip Errors
 - Shor, Steane, and Calderbank-Shor-Steane (CSS), Codes
 - Stabilizer Codes
 - Perfect Quantum Codes
 - Quantum Fault-Tolerance
 - Threshold Theorem
 
References:
- D. C. Marinescu and G. M. Marinescu, “Approaching Quantum Information Theory and Error Correction,”
 - M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,”Cambridge, 2000
 - J.S.Bell,“Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy,”CambridgeUniversity Press, Cambridge, 1987.
 - T.M. Cover and J.A. Thomas,“Elements of Information Theory,” Wiley Series in Telecommunications, Wiley, New York,1991.
 - S.A.Vanstone and P.C. van Oorschot, “An Introduction to Error Correcting Codes with Applications,” Kluwer Academic Publishers, Boston, MA, 1989.
 
Literature:
Many research articles can be accessed through the quant-ph archive maintained by Los Alamos National Laboratory.
- H. Barnum, M. A. Nielsen, and B. Schumacher, “Information Transmission Througha Noisy Quantum Channel,” Physical Review A, 57(6):4153--4175, 1998.
 - C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters. “Teleporting an UnknownState via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review Letters, 70(13): 1895 - 1899, 1993.
 - C.H. Bennett and P.W. Shor, “Quantum Information Theory,” IEEE Trans. on Information Theory, 44(6):2724 - 2742, 1998.
 - A.R. Calderbank and P.W. Shor, “Good Quantum Error-Correcting Codes Exist,” Physical Review A, 54(42): 1098 - 1105, 1996.
 - A.K.Ekert and R.Jozsa, “Quantum Algorithms: Entanglement Enhanced Information Processing,”Proceedings of the Royal Society London A, 356(1743): 1769 - 1782, 1998. Also: Preprint, arxiv.org/quant-ph/9803072 v1, November 2000.
 - D.Gottesman, “Stabilizer Codes and Quantum Error Correction”, Ph.D. Thesis, California Institute of Technology}, Preprint, arxiv.org/quant-ph/9705052 v1, May 1997.
 - D. Gottesman, “An Introduction to Quantum Error Correction,” Proceedings Symposium in Applied Mathematics, Preprint, arxiv.org/quant-ph/00040072 v1, April 2000.
 - P. Hausladen, R. Jozsa, B. Schumacher, M. Westmorland, and W. K. Wooters,“Classical Information Capacity of a Quantum Channel,” Phys. Rev. A. 54(1):1869--1876, 1996.
 - S. Holevo, “The Capacity of Quantum Channel with General Signal States,” IEEE Trans. on Inform. Theory, 44:269--273, 1998, also Preprint, arXiv.org/quant-ph/9601020.
 - R. Jozsa and B. Schumacher, “A new Proof of the Quantum Noiseless Coding Theorem,” Journal of Modern Optics, 41(12):2343-2349, 1994.
 - R. Jozsa, “Entanglement and Quantum Computation,” Geometric Issues in the Foundations of Science. S. Hugget, L. Mason, K.P. Tod, S.T. Tsou, and N. M. J. Woodhouse, Editors. OxfordUniversity Press, 1997. Also: Preprint, arxiv.org/quant-ph/9707034 v1, 1997.
 - R. Jozsa, “Illustrating the Concept of Quantum Information,” Preprint arxiv.org/quant-ph/0305114 v1, 2003.
 - M. Keyl, “Fundamentals of Quantum Information,” Reprint arxiv.org/quant-ph/0202122, 2002.
 - E.Knill, R.Laflame, and W.H.Zurek, “Resilient Quantum Computation: Error Models and Thresholds,” Proceedings of the Royal Society London A , 454: 365 - 384, 1998.
 - R.Laflame, C. Miquel, J.-P. Paz, and W.H.Zurek, “Perfect Quantum-Error Correcting Code,” Physical Review Letters, 77: 198 - 201, 1996, Preprint, arxiv.org/quant-ph/9602019, 1996.
 - S. Lloyd, “Capacity of a Noisy Communication Channel,” Physical Review A, 56: 1613--1622, 1997.
 - W. Schumacher,“Quantum Coding,”Physical Review A, 51(4): 2738 - 2747, 1995.
 - W. Schumacker, M. D. Westmorland and W. K. Wooters, “Limitations on the Amount of Accessible Information in a Quantum Channel,” Phys. Rev. Lett, 76:3452--3455, 1996.
 - B. W. Schumacher and M. D. Westmorland, “Sending Quantum Information via Noisy Quantum Channels,” Phys. Rev. A, 56(1):131--138, 1997.
 - C.E. Shannon, “A Mathematical Theory of Communication,”Bell Sys. Tech. Journal, 27:379--423 and 23--656, 1948.
 - P.W.Shor, “Fault-Tolerant Quantum Computation,” 37th Annual Symposium on Foundations of Computer Science, 56 - 65, IEEE Press, Piscataway, NJ, 1996.
 - P.W.Shor, “Capacities of Quantum Channels and How to Find Them,” Preprint, arxiv.org/quant-ph/0304102 v1, April 2003.
 - A.M.Steane, “Multiple Particle Interference and Quantum Error Correction,” Preprint, arxiv.org/quant-ph/9601029 v3, May 1996.
 - A.M. Steane, “Error Correcting Codes in Quantum Theory,” Phys. Rev. Lett. 77:793--797, 1997.
 - B. M. Terhal, “Is Entanglement Monogamous?” IBM Journal of Research and Development, 48(1): 71--78,2004. Also Preprint, arxiv.org/quant-ph/0307120 v1, July 2003.
 - V.Vedral, “The Role of Entropy in Quantum Information Theory,” Preprint, arxiv.org/quant-ph/0102094 v1,
 - J. Watrous, “Lecture Notes: Theory of Quantum Information,” University of Waterloo, 2007.
 
Grading policy:
Homework 35%
Midterm 25%
Final exam 40%
