Supporting Information

Critical Assessment of the Emission Spectra of Various

Photosystem II Core Complexes

Jinhai Chen,1 Adam Kell,1Khem Acharya,1Christopher Kupitz,2

Petra Fromme,2 and Ryszard Jankowiak1,3,*

1Department of Chemistry and 3Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA; 2Department of Chemistry and Biochemistry, Arizona State University,

Tempe, Arizona 85287, USA

*Corresponding author; e-mail address:

Temperature dependent emission spectra. Fig. 1 shows the temperature-dependent emission spectra of the Photosystem II core complex (PSII-cc) (Krausz et al. 2005a), intact CP43 (Dang et al. 2008; Reppert et al. 2008), and partly bleached CP47 (Acharya et al. 2010)(frames A-C, respectively).It appears that the F689 emission band (see the double arrow)observed in frames A and C is the same as the F695mod band assigned previously to the sub-population of CP47 complexes with “modified” low-energy states (Neupane et al. 2010), since annealing experiments largely recover the contribution from the lowest energy state, i.e., the F695 emission band (compare the 70 and 75 K spectra in frames A and C, respectively, with shapes of curves f and g in Fig. 1B of the main manuscript).A very weak contribution from 685 nm emission (F685 band; see short black arrow) most likely originates from a minor contribution from the destabilized CP47 complexes. It is possible that some pigments were photooxidized.

Fig.1Frame A shows the temperature dependent emission spectra of PSII-cc (Krausz et al. 2005a). Frames B and C show temperature-dependent emission spectra of intact CP43 (Dang et al. 2008; Reppert et al. 2008) and CP47 (Acharya et al. 2010), respectively. The CP47 spectra were measured after the sample was illuminated with 496.5 nm laser light (f ~ 4000 J/cm2) at 5 K

Hole-burned spectra. We briefly re-examine the (nonresonant) persistent saturated holesobtained for isolated reaction centers (RCs)(i.e., the D1/D2/Cyt b559 complex) from C. reinhardtii and spinach (Acharya et al. 2012a). The broad persistent holes in Fig. 2 (B = 665.0 nm) appear as a result of downhill energy transfer. Both holes revealed responses in the Qx region of the active pheophytin (PheoD1) near 545  1 (for C. reinhardtii, frame A) and 544  1 nm (for spinach, frame B), respectively (Acharya et al. 2012a).This suggests that the weak, narrow (fwhm of ~120 cm-1), nonresonant bleach is strongly contributed to by PheoD1. In isolated RCs the Qytransition of PhoeoD1, depending on sample quality, lies near 681-684 nm (see dashed arrows); similar Qytransitions of PhoeoD1 were obtained for 496.5 nm excitation (Acharya et al. 2012a; Jankowiak et al. 1999, 2002; Konermann and Holzwarth 1996; Krausz et al. 2008; Mimuro et al. 1995; Stewart et al. 2000; Vasil’ev et al. 2001), though the vertical energies of PheoD1 in PSII-cc were also placed near 666 nm (Lewis et al. 2013; Romero et al. 2014; Shibata et al. 2013). Note that site energies can be directly compared only if the same reorganization energy is used in theoretical calculations;that is, vertical and (0,0) transition energies cannot be directly compared. There is even less agreement regarding the site energy of PheoD2 (Jankowiak et al. 1999, 2002; Konermann and Holzwarth 1996; Lewis et al. 2013; Mimuro et al. 1995; Romero et al. 2014; Shibata et al. 2013; Stewart et al. 2000; Vasil’ev et al. 2001).

Fig. 2 Nonresonant, persistent NPHB spectra obtained for RCs from isolated C. reinhardtii (frame A) and spinach (frame B) (Acharya et al. 2012a). Both spectra revealed bleaching in the Qx absorption band of PheoD1 near 545 and 544 nm, respectively, whose position depends on sample intactness. Both spectra were obtained with λB = 665.0 nm and measured at 5 K

Note that in the case of a persistent nonphotochemical hole burned (NPHB) spectrum, there is no electrochromic shift and there are no charges on chlorophyllD1(ChlD1) (at least in isolated spinach RC without QA) that could lead to the electrochromic shift. We suggest that bleaching of PheoD1 can occur during the long-lived triplet state, i.e., 3ChlD1. A small PheoD1 shift was observed for isolated RCs from C. reinhardtii (Acharya et al. 2012a) since in this preparation a small subpopulation of RCs contained QA, and as a result, these RCs could form the PQA state. Although hole shapes in Fig.2are similar, the broad hole in C. reinhardtii,located at 683.8 nm, is about 3.2 nm red-shifted in comparison with the hole typically obtained for RCs isolated from spinach (Acharya et al. 2012a; Chauvet et al. 2015). The Qy and Qx spectral positions of the latter hole in isolated RCs from spinach also varied from preparation to preparation (Acharya et al. 2012a; Chauvet et al. 2015). We hasten to add that the Qy nonresonant persistent holes have a profile similar to that obtained due to formation (in the presence of dithionite) of stable PheoD1 (Jankowiak et al. 1999), further supporting the assignment that PheoD1 may contribute near the 680-684 nm spectral region. Very recently, Acharya et al. (2012a, 2012b) and Chauvet et al. (2015) proposed that the RC from C. reinhardtii is more intact than that isolated from spinach and the persistent hole near 684 nm, even in isolated RCs, can be assigned as bleaching of PheoD1 (see frame A of Fig. 2).

We want to mention here that so farcharge-transfer (CT) emission has not been observed in isolated RCs from C. reinhardtii nor spinach, and, in general, the isolated RC samples are heterogeneous mixtures of intact and destabilized D1/D2/Cyt b559complexes (Acharya et al. 2012a, 2012b; Chauvet et al. 2015). Thus, it is very likely that the site energy of PheoD1 in PSII-cc near 685 nm (as proposed by Krausz et al. (2005a) and Masters et al. (2001))may not only be correct, but the 686-687 nm emission could originate from the pigments in closed RCs, e.g., from Chls and Pheos contributing to the lowest excitonic state of the RCs, and, at least in part, from the transiently decoupled PheoD1 (vide infra) during the long lived 3P state.

Fig.3shows the 5 K absorption spectrum of Thermosynechococcus (T.) elongatus PSII-cc and the corresponding persistent (curve b) and transient (curve c) HB spectra (B = 496.5 nm). The bleach near 693 nm in spectrum b corresponds to the lowest energy band of CP47, in agreement with our data reported for the isolated (intact) CP47 complex (Acharya et al. 2010; Neupane et al. 2010; Reppert et al. 2010).We suggest that the major band near 685.5 nm corresponds to the lowest energy state in the closed RCs, though a contribution from the peripheral antennas (CP43 and/or CP47) cannot be entirely excluded.However, comparison to previous nonresonant HB spectra for spinach PSII-cc (Reppert et al. 2010) reveals more bleach at ~685 nm for PSII-cc from T. elongatus. The ΔΔA spectrum,i.e., ΔHB, of Reppert et al. (2010) (see top inset of Figure 2 therein) was found to be contributed to solely by the nonresonant HB spectra of intact, isolated CP43 and CP47 complexes. Theoretical description of the holes presented above is beyond the scope of this manuscript as there is no agreement in the literature regarding the site energies of various antenna and RC pigments (Müh et al. 2012; Raszewski and Renger 2008; Reppert et al. 2008, 2010; Romero et al. 2014; Shibata et al. 2013). Here it suffices to say that the remaining negative and positive bands in spectrum b at higher energies are due to the bleaching of the pigment(s) contributing to the lowest energy state(s) mentioned above, which leads to modified excitonic interactions.

Fig. 3Low-temperature (5K) spectra obtained for PSII-cc of T. elongatus (closed RC).Curve a is the absorption spectrum. Spectra b and c are the persistent (saturated) and transient holes, respectively, obtained with B = 496.5 nm. The inset shows the Qx absorption region of Pheos (curve a') and the Qx bleach (curve b') corresponding to the persistent hole, i.e., spectrum b. The black dotted curve in the inset (superimposed on curve b') is the fit to several holes burned in different experiments

Note that spectrum c (i.e., the transient hole) was obtained after saturation of the persistent hole (spectrum b) and, as a result, reveals mostly the new (modified) lowest energy state near 686 nm. This state (at 5 K) most likely corresponds to the lowest energy state of the RC pigments (revealed via the triplet state(s), i.e., 3P or 3ChlD1)and/or a triplet of photo-bleached CP47. This is consistent with the fact that curve c does not possess any bleach in the Qxregion of Pheos. In contrast, curve b has bleach near 541.8 nm (see curve b' in the inset); as expected the bleach in the Qxregion of PheoD1 is blue-shifted to about 542 nm due to the electrochromic shift observed in the closed RC within the PSII-cc, in agreement with the data of Krausz et al. (2005b). Subsequent burning with B = 496.5 nm led to a persistent hole which clearly revealed the Qxtransition of electrochromically shifted PheoD1(see inset).

The question arises as to what is the origin of the broad nonresonant ~680, ~684, and ~685 nm persistent holes (in Figures 2 and 3), which are accompanied by a bleach in the Qxregion of PheoD1? For isolated RCs, NPHB can occur during the long-lived triplet or CT states (Acharya et al. 2012a). Bleaching during the charge separated states is only possible if QA is present, otherwise fast recombination leads to 3ChlD1. Thus, while the continuous wave laser is on, it may be possible to bleach the temporarily decoupled PheoD1. A similar argument can be made for PSII-cc and membrane PSII (PSII-m) (with intact RCs and QA present). While illuminated PSII-cc most likely contains closed RCs (i.e., with QA–), with only a fraction of P680 open. If a closed RC is reduced, further charge separation may be possible (i.e., ChlD1+PheoD1–), which would quickly recombine and form 3ChlD1.The temporarily decoupled PheoD1 could then act as an energy trap for energy transfer from higher energy states (being excited during illumination).

Sample Isolation and Preparation.Tables 1 and 2 provide structural/biochemical information and isolation conditions of various PSII-cc and RC/PSII-m, respectively.

Table 1. Structural/biochemical information and isolation conditions of various PSII-cc

Organism / PSII-cc1
T. elongatus / PSII-cc2
Spinach / PSII-cc3
T. elongatus / PSII-cc4
T. vulcanus / PSII-cc5
Synechocystis 6803
Detergent / β-DM / β-DM / β-DM / β-DM, LDAO / β-DM
Isolation Conditions / Detergent extraction, tentacle ion exchange chromatography
3X crystallization / Detergent extraction, centrifugation at 17,000g, perfusion chromatography
No crystallization / Detergent extraction, centrifugation at 50,000 rpm
No crystallization / Detergent extraction, anion exchange chromatography
No crystallization / Detergent extraction, anion exchange chromatography
No crystallization
Oligomeric State / Dimer / Dimer / Dimer / Dimer / Dimer
Chl/P680 / 37 / 32  1 / 34  2.1 / N/R / 37.502
Pheo/P680 / 2 / 2 / 2 / N/R / 2
Chl b / 0 / 0.8  0.2 / N/R / N/R / N/R
-carotene / N/R / 7  1 / 8.6  1 / N/R / 9.50  0.5
Cyt b559 / N/R / N/R / N/R / N/R / 1.16  0.1
QA/P680 / 1 / N/R / 2.9  0.8 / N/R / 1.08  0.1
QB/P680 / 0.8 / N/R / N/R / 1.08  0.1
Mn/P860 / N/R / 4.5  0.5 / 3.6  0.7 / N/R / 3.92 0.2
Protein Subunits / 2X (D1, D2, CP47, CP43, PsbE,F,H, I,J,K,L,M,O,T,U,V,X,Y,Z) / 2X (D1, D2, CP47, CP43, CP29 (< 10 mol %), PsbE,F,O, W, several small subunits) / 2X (D1, D2, CP47, CP43, PsbE,F,H,I,J,K,L,M,O,T,U,V,X,Y,Z) / 2X (D1, D2 CP47, CP43, PsbE,F,I,K,L,T, Cyt c550, several small subunits) / 2X (D1, D2 CP47, CP43, PsbE,F, several small subunits)

N/R = not reported. 1Kupitz et al. (2014a, b); 2Smith et al. (2002); 3Kern et al. (2005); 4Shen and Kamiya (2000); 5Tang and Diner (1994)

Table 2. Structural/biochemical information and isolation conditions of various isolated RCs and PSII-m

Organism / Isolated RC1
Spinach / Isolated RC1
C. reinhardtii / PSII-m3
Spinach / PSII-m4
C. reinhardtii
Detergent / β-DM, Triton X-100, / β-DM, Triton X-100 / Triton X-100 / Triton X-100
Isolation Conditions / Detergent extraction from PSII-enriched membranes, differential centrifugation at 100,000g, DEAE ionic exchange chromatography, Triton X-100 exchange with β-DM, NaCl gradient / Detergentextraction from thylakoid membranes, differential centrifugation at 150,000g, DEAE ionic exchange chromatography, Triton X-100 exchange with β-DM, NaCl gradient / Detergent extraction / Detergent extraction, centrifugation at 40,000g
Oligomeric State / Isolated / Isolated / Supercomplex / Supercomplex
Chl/P680 / 5.85 / 5.7 / 134  2 / N/R
Pheo/P680 / 2 / 2 / 2 / N/R
Chl b / 0 / 0 / 62  1 / N/R
-carotene / N/R / N/R / 9  1 / N/R
Cyt b559 / N/R / N/R / 1.0  0.2 / N/R
QA/P680 / Lost / Partly present / N/R / N/R
QB/P680 / Lost / Lost / N/R / N/R
Mn/P680 / Destroyed / Destroyed / ~5 / N/R
Protein Subunits / D1, D2,PsbE,F / D1, D2,PsbE,F / Complete Membranes / Complete Membranes

N/R = not reported. 1Acharya et al. (2012a);3Smith et al. (2002); 4Wang et al. (2002)

References

Acharya K, Neupane B, Reppert M, Feng X, Jankowiak R (2010) On the unusual temperature-dependent emission of the CP47 antenna protein complex of photosystem II. J Phys Chem Lett 1:2310–2315

Acharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R (2012a) Site energies of active and inactive pheophytins in the reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 116:3890–3899

Acharya K, Zazubovich V, Reppert M, Jankowiak R (2012b) Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 116:4860–4870

Chauvet A, Jankowiak R, Kell A, Picorel R, Savikhin S (2015) Does the singlet minus triplet spectrum with major photobleaching band near 680-682 nm represent an intact reaction center of photosystem II? J Phys Chem B 119:448–455

Jankowiak R, Rätsep M, Picorel R, Seibert M, Small GJ (1999) Excited states of the 5-chlorophyll photosystem II reaction center. J Phys Chem B 103:9759–9769

Jankowiak R, Hayes JM, Small GJ (2002) An excitonic pentamer model for the core Qy states of the isolated photosystem II reaction center. J Phys Chem B 106:8803–8814

Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang K-D, Zouni A (2005) Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim Biophys Acta1706:147–157

Konermann L, Holzwarth AR (1996) Analysis of the absorption spectrum of photosystem II reaction centers: temperature dependence, pigment assignment, and inhomogeneous broadening. Biochemistry 35:829–842

Krausz E, Hughes JL, Smith PJ, Pace RJ, Peterson Årsköld S (2005a) Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. Photosynth Res 84:193–199

Krausz E, Hughes JL, Smith P, Pace R, Peterson Årsköld S (2005b) Oxygen-evolving photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem Photobiol Sci 4:744–753

Krausz, E, Cox N, Peterson Årsköld S (2008) Spectral characteristics of PS II reaction centres: as isolated preparation and when integral to PS II core complexes. Photosynth Res 98:207–217

Kupitz C, Grotjohann I, Conrad CE, Roy-Chowhury S, Fromme R, Fromme P (2014a) Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Phil Trans R Soc B369:1471–2970

Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN, Hunter MS, Shoeman RL, White TA, Wang D, et al. (2014b) Serial time-resolved crystallography of photosystem II using a femtosecond x-ray laser. Nature513:261–265

Lewis KLM, Fuller FD, Myers JA, Yocum CF, Mukamel S, Abramavicius D, Ogilvie JP (2013) Simulations of the two-dimensional electronic spectroscopy of the photosystem II reaction center. J Phys Chem A 117:34–41

Masters V, Smith P, Krausz E, Pace R (2001) Stark shifts and exciton coupling in PSII ‘supercores.’ J Lumin 94-95:267–270

Mimuro M, Tomo T, Nishimura Y, Yamazaki I, Satoh K (1995) Identification of a photochemically inactive pheophytin molecule in the spinach D1-D2-cyt b559 complex. Biochem Biophys Acta 1232:81–88

Müh F, Madjet ME-A, Renger T (2012) Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynth Res 111:87–101

Neupane B, Dang NC, Acharya K, Reppert M, Zazubovich V, Picorel R, Seibert M, Jankowiak R (2010) Insight into the electronic structure of the CP47 antenna protein complex of photosystem II: holeburning and fluorescence study. J Am Chem Soc132:4214–4229

Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130:4431–4446

Reppert M, Zazubovich V, Dang NC, Seibert M, Jankowiak R (2008) Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II. J Phys Chem B 112:9934–9947

Reppert M, Acharya K, Neupane B, Jankowiak R (2010) Lowest electronic states of the CP47 antenna protein complex of photosystem II: simulation of optical spectra and revised structural assignments. J Phys Chem B 114:11884–11898

Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Phys 10:676–682

Shen J-R, Kamiya N (2000) Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. Biochemistry39:14739–14744

Shibata Y, Nishi S, Kawakami K, Shen J-R, Renger T (2013) photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J Am Chem Soc 135:6903–6914

Smith PJ, Peterson S, Masters VM, Wydrzynski T, Styring S, Krausz E, Pace RJ (2002) Magneto-optical measurements of the pigments in fully active photosystem II core complexes from plants. Biochemistry41:1981–1989

Stewart DH, Nixon PJ, Diner BA, Brudvig GW (2000) Assignment of the Qy absorbance bands of photosystem II chromophores by low-temperature optical spectroscopy of wild-type and mutant reaction centers. Biochemistry 39:14583–14594

Tang X-S, Diner BA (1994) Biochemical and spectroscopic characterization of a new oxygen-evolving photosystem II core complex form the cyanobacterium Synechocystis PCC 6803. Biochemistry 33:4594–4603

Vasil’ev S, Orth P, Zouni A, Owens TG, Bruce D (2001) Excited-state dynamics in photosystem II: insights from the x-ray crystal structure. Proc Natl Acad Sci USA 98:8602–8607

Wang J, Gosztola D, Ruffle SV, Hemann C, Seibert M, Wasielewski MR, Hille R, Gustafson TL, Sayre RT (2002) Functional asymmetry of photosystem II D1 and D2 peripheral chlorophyll mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA99:4091–4096