RAMRAO ADIK INDTITUTE OF TECHNOLOGY

NERUL, NAVI MUMBAI

TUTORIAL-01

[SUCCESSIVE DIFFERENTIATION]

1)  If , then P.T.

2)  Find nth derivative of y =

3)  Find yn if y=

4)  If then show that yn = (-1)n-2 (n-2)![ -]

5)  Find nth order derivative of

6)  y= tan -1 [] P.T yn= (-1)n-1(n-1)! Sin( nθ ) sin(n) θ, where θ = tan -1 ()

7)  U = eax cos(bx+c) then P.T. Un= (a2+b2)n/2 eax cos[bx + c + n tan-1(b/a)]

8)  Find yn if y = e5x cosx cos3x

9) If y= xn logx then P.T yn+1 =

10) If U1/k + U-1/k = 2x then show that (x2-1)Un+2 + (2n+1)xUn+1+ (n2-k2) Un=0

11) If y = a cos (logx) + b sin (logx) then show that x2 yn+2 + (2n+1)x yn+1+ (n2+1)yn =0

12) If y = P.T (1-x2) yn -[2(n-1)x+1]yn-1- (n-1)(n-2)yn-2=0

13) If y= eacosx then show that (1-x2) yn+2 + (2n+1)x yn+1- (n2+a2)yn =0

14) If x = sinθ , y=sin(2θ) prove that (1-x2) yn+2 - (2n+1)x yn+1- (n2-4)yn =0

15) If x = sinh(y) prove that (1+x2) yn+2 + (2n+1)x yn+1+ n2yn =0

16) State Leibnitz’s Theorem and use it to find yn for y = e2x (x3+x+1)

17) If y = then prove that yn =[ log x- (1+++---+)]

18) U = (x2-1)n then prove that [(x2-1)Un] = n(n+1) Un where Un=U

19) y = tan-1[] then prove that (x2+a2) yn+2 + 2 (n+1)x yn+1+ n(n+1)yn =0

20) If u= sin [ log(1+2x+x2)] then prove that

(x+1)2Un+2 + (2n+1) (x+1)Un+1+ (n2+4) Un=0

TUTORIAL-02

[PARTIAL DIFFERENTIATION]

1) If then prove that and also find the value of

2) If u = log (x2+ y2 + z2) then prove that x = y = z

3) If xx yy zz = c, show that at x = y = z, = -[xlog(ex)] and also P.T

- 2xy + = at x = y= z

4) x = rcosθ , y = rsinθ then prove that + = [()+()]

5) If u= (8x2+ y2)[logx-logy] then find x+y

6) If u= sin[] then show that = -

7) Verify the Euler’s theorem for u = x2 tan -1 () - y2 tan -1 () where xy 0

and also show that =

8) If F(x,y) = ++ then show that x+y+2F(x,y) =0

9) If u= tan -1 [] Then prove that x2+ 2xy+ y2 = 2cos3u sinu

10) If u= then prove that

x2+ 2xy+ y2= tan u[]

11) If x = ecos(rsinθ) and y = esin(rsinθ) then prove that

= and = - Hence deduce that ++= 0

12)  If z = f(u,v) where u = x2-2xy-y2 and v=y then show that

(x+y) + (x-y) = 0 is equivalent to =0

13) If logeθ = r-x where r2= x2+ y2 then show that =

14) If F=F(x,y) and If x+y = 2eθcos(Ф) , x-y= 2ieθsin(Ф) then prove that

15) State and Prove Euler’s Theorem on Homogeneous Functions of Three

Independent Variables.

16) If θ= te then find the value of ‘n’ for which

17) If u = f(r) and x = rcoθ , y = rsinθ , then P.T., where

18) If , and lx+my+nz=0 then prove that

TUTORIAL NO -03

[Applications of Partial Derivatives, Jacobian]

1] Show that the minimum value of u =xy+a(+) is 3a

2] Find the dimensions of the rectangular box with open top of maximum

capacity whose surface area is 432 cm2

3] Find maximum value of xm yn zp where x + y +z = a

4] Find the minimum and maximum distances from the origin to the

Curve 3x2+4xy+6y2=140

5] Divide 24 into three parts such that the continued product of the first,

square of the second and cube of the third may be maximum.

6] Determine the point on paraboloid z = x2+y2 which is closest to the

Point ( 3, -6, 4)

7] Find the minimum distance of any point from the origin on the plane

x +2y +3z = 14.

8] Find the minimum and maximum distance of the point (3,4,12) from

The Sphere x2 + y2+ z2 = 1

9] Examine the minimum and maximum on the surface

10] Examine the minimum and maximum on the surface

11] A rectangular box , open at top is to have a volume of 108 m3. Find

the dimensions of the box so that the surface area is minimum.

12] Find if

1) u = x siny, v = y sinx, 2)

3) , 4) u = x + y, y = uv.

13] Find = J and = J’ for

1) , 2)

14] Find

15] Find if u = 2axy, v = a (x2 + y2) and x = r cos ө , y = r sin ө.

16] find and

u = r sinө cosφ, v = r sinө sinφ , w = sinө cosφ

TUTORIAL NO -04

[Indeterminate Forms,Expansions of functions Fitting of curves]

A] Evaluate the following limits:

1) 2) 3) 4)

5) Find values of a, b, c such that

6) Find the constants a, b, c if

7) Find value of ‘p’ if is finite.

8) Evaluate 9) Evaluate

10) Find a, b if 11) Evaluate

12) Prove that 13) Evaluate

14) Evaluate 15) Evaluate

16) Evaluate 17) Evaluate

18) Evaluate

B]

1)  Prove that ecosbx = 1+ ax +

2)  Prove that

3)  Show that log(secx)=

4)  P.T sin[e-1]=

5)  P.T. log[1+e]=

6)  P.T. sinx = x+

7)  S.T. cos[tanh(logx)]=

8)  Expand in powers of x and Hence show that

9)  Expand log[] upto term in x

10)  If y = then prove that x=

11) Show that xcosecx =

12) Express 2x +3x-8x+7 in terms of (x-2) by using Taylor’s Theorem.

13) By Using Taylor’s Theorem arrange the function in Powers of x

[7+(x+2) +3(x+2)+(x+2)-(x+2)]

14) Calculate the value of to four decimal places using Taylor’s

Theorem

15) Use TSE to calculate approximately (63.7)

16) Use TSE to calculate approximately (2.98)

C) 1) Fit a straight line for given value.

x / 12 / 15 / 21 / 25
y / 50 / 70 / 100 / 120


2) Fit a straight line for given value.

Year / 1941 / 1951 / 1961 / 1971 / 1981
Production in ton / 8 / 10 / 12 / 10 / 16

Find expected production in 2021.

3) Fit a straight line for given value

x / 0 / 1 / 3 / 6 / 8
Y / 1 / 3 / 2 / 5 / 4


Find y(15)

D] Fit a Parabolic equation for the data given below

1) Find y(10)

x / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9
y / 2 / 6 / 7 / 8 / 10 / 11 / 11 / 10 / 9

2) Fit x=a+by+cy2

X / -3 / -2 / -1 / 0 / 1 / 2 / 3
Y / 4.63 / 2.11 / 0.67 / 0.09 / 0.63 / 2.15 / 4.58

Find x(2)

3) Using least squarer method fit y=a+bx+cx2 for (-1,2) (0,0) (0,1) (1,2)

E) 1) Fit x=aby for

Y / 2 / 3 / 4 / 5 / 6
X / 144 / 172.8 / 207.4 / 248.6 / 298.5

2) Fit y=abx for the data. Find y at 25.

X / 1 / 2 / 5 / 10 / 20 / 30 / 40 / 50
Y / 98.2 / 91.7 / 81.3 / 64.0 / 36.4 / 32.6 / 17.1 / 11.3

3) Fit y=aebx for

X / 0 / 1 / 2 / 3
Y / 0.5 / 3.69 / 27.3 / 201.7

TUTORIAL NO -05

[Matrices]

1)  Find the rank of the matrix using Row-echelon form of following matrix.

i) ii)

2) Reduce the matrix to normal form and find it’s rank

i) ii)

3) Find the non-singular matrix P and Q such that PAQ is in normal form,

i) ii)

4) Solve the following equations

i) x+2y+3z=0; 2x+3y+z=0; 4x+5y+4z=0; x+2y-2z=0

ii) x+y+2z=0; x+3y+4z=0; x+2y+3z=0; 3x+4y+7z=0

iii) 2x-y+3z=0; 3x+2y+z=0; x-4y+5z=0

iv) 3x+y-5z=0; 5x+3y-6z=0; x+y-2z=0; x-5y+z=0

5) Examine whether the following vectors are linearly dependent or independent

i) [2,1,1] , [1,3,1], [1,2,-1]

ii) [3,1,-4], [2,2,-3], [0,-4,1]

6) Test the following equations for consistency

i) x+2y-z=1; x+y+2z=9; 2x+y-z=2

ii) x-3y-3z=-10; 3x+y-4z=0; 2x+5y+6z=13

iii) 6x+y+z=-4; 2x-3y-z=0; -x-7y-2z=7

7) Find the values of λ for which the system of equations x+y+4z=1;

X+2y-2z=1; λx+y+z=1.

8) Solve the following equations by Gauss elimination method;

i) x+y+z=2; 2x+2y-z=1; 3x+4y+z=9

ii) 2x+y+z=10; 3x+2y+3z=18; x+4y+9z=16

9)  Solve the following equations by Gauss-Jorden method,

i)  3x+2y-2z=4; x-2y+3z=6; 2x+3y+4z=15

ii)  X+2y+z=8; 2x+3y+4z=20; 4x+3y+2x=16

10)  Solve the equations by using Gauss-Seidel method,

i)  15x+y+z=17; 2x+15y+z=18; x+2y+15z=18

ii)  10x+2y+z=9; 2x+20x-2z=-44; -2x+3y+10z=22

TUTORIAL NO -06

[Complex Numbers]

Part I

1)  Express the complex numbers in the form x+iy

i) ii) iii)

2) Find modulus and amplitude of

i) ii) iii)

3) Prove that the statements ‘ Re(z)>0’ and are equivalent

4) Express in polar form i)1-cosα+isinα ii)

5) If α & β are roots of x2-2x+2=0 then show that

6) If z=cosθ + isinθ , show that

7) If z1, z2 are two complex numbers then show that

8)  If x and y are real, solve the equation

9)  If (1+cosθ+isinθ)(1+cos2θ=isin2θ)=u+iv prove that

i) ii)

10) If sinθ+sinФ=0 & cosθ+cosФ=0 then prove

cos2θ+cos2Ф= 2cos(Π+θ+Ф) & sin2θ+sin2Ф = 2 sin(Π+θ+Ф)

11) Use De`moivre`s Theorem to solve equation x-x+1=0

12) solve

13) Express cosθ in term of multiple of θ

14) Express sinθ in term of multiple of θ

15) Express in powers of sinθ only

16) Show that

17) Show that

18) Simplify

Part II

1] Find tanhx if 5sinhx-coshx=5

2] S.T = cosh6θ+sinh6θ

3] If y=log(tanx) P.T i) sinhny =

ii) 2coshnycosec2x = cosh(n+1)y+cosh(n-1)y

4] If u= log tan[] P.T i) tanh = tan ii) coshu = secθ

5] S.T

6] If tan(α+iβ)=x+iy show that i) x2+y2+2xcot(2α)=1

ii) x2+y2-2ycoth(2β)+1=0

7] P.T i) ii) sinh(tanx) = log tan[]

8] P.T sin(cosecθ)=

9] If log[ cos(x-iy)]= α+iβ , P.T α= and find β.

10] Separate into real & imaginary part of ii

11] S.T

12] P.T

13] S.T i) sin(log i)=1 ii) cos(log i)=0

14] If Then S.T (α+β)= e and tan()=

15] P.T

16] P.T , is it defined for all values of z

Tutorial 7

Topic: Scilab

//Programme for Crout's Method ( Decomposition Method )

//Name:

//Roll No.:

//Batch: And Div:

clc

A=input('Enter 3*3 coefficient matrix A:')

l(1,1)=A(1,1);

l(1,2)=0;

l(1,3)=0;

u(1,1)=1;

u(1,2)=A(1,2)/l(1,1);

u(1,3)=A(1,3)/l(1,1);

u(2,1)=0;

u(2,2)=1;

u(3,1)=0;

u(3,2)=0;

u(3,3)=1;

l(2,1)=A(2,1);

l(2,2)=A(2,2)-(l(2,1)*u(1,2));

l(2,3)=0;

l(3,1)=A(3,1);

u(2,3)=(A(2,3)-l(2,1)*u(1,3))/l(2,2);

l(3,2)=A(3,2)-l(3,1)*u(1,2);

l(3,3)=A(3,3)-(l(3,1)*u(1,3)+l(3,2)*u(2,3));

L=l;

U=u;

B=input('Enter 3*1 constants matrix B:')

v=L\B;

x=U\v;

disp('A')

disp(A)

disp('B')

disp(B)

disp('Lower triangular Matrix L is')

disp(L)

disp('Upper triangular Matrix U is')

disp(U)

disp('By Crout Method,')

disp('Ans')

disp(x)

Tutorial 8

Topic: Scilab

//Programme for Cuvrve fitting 1 (line)

//Name:

//Roll No.:

//Batch: And Div:

//Fitting a straight line y= a + bx

clc

x=input('Enter the values of x:')

y=input('Enter the values of y:')

n=length(x)

sx=sum(x)

sx2=sum(x^2)

sy=sum(y)

sxy=sum(x.*y)

A=[n sx;sx sx2]

B=[sy;sxy]

c=linsolve(A,-B)

disp(c)

//Programme for Curve fitting 2( Parabola)

//Name:

//Roll No.:

//Batch: And Div:

//Fitting a parabola y = a + bx +c x^2

clc

x=input('Enter the values of x:')

y=input('Enter the values of y:')

n=length(x)

sx=sum(x)

sx2=sum(x^2)

sy=sum(y)

sxy=sum(x.*y)

sx3=sum(x^3)

sx4=sum(x^4)

sx2y=sum((x^2).*y)

A=[n sx sx2;sx sx2 sx3; sx2 sx3 sx4]

Tutorial 9

Topic: Scilab

// Programme for Gauss Joran Method

clc

A=input('Enter 3*3 coefficient matrix A:')

B=input('Enter 3*1 constants matrix B:')

A_Aug=[A,B]

a=rref(A_Aug)

disp('A')

disp(A)

disp('B')

disp(B)

disp('Agmented Matrix [A:B] is')

disp(A_Aug)

disp('By Gauss Jordan Ellimination,')

disp(a)

disp('Ans')

disp(a(1:3,4))

Tutorial 10

Topic: Scilab

//Programme for Gauss Jacobi Method

//Name:

//Roll No.:

//Batch: And Div:

clc

A=input('Enter 3*3 coefficient matrix A:')

B=input('Enter matrix B:')

i=input('Enter initial values')

for j=1:7

x1=(B(1)-(A(1,2)*i(2))-(A(1,3)*i(3)))/A(1,1);

x2=(B(2)-(A(2,1)*i(1))-(A(2,3)*i(3)))/A(2,2);

x3=(B(3)-(A(3,1)*i(1))-(A(3,2)*i(2)))/A(3,3);

i(1)=x1;

i(2)=x2;

i(3)=x3;

b=i;

disp(b)

end

//Programme for Gauss Seidal Method

//Name:

//Roll No.:

//Batch: And Div:

clc

A=input('Enter 3*3 coefficient matrix A:')

B=input('Enter matrix B:')

i=input('Enter initial values')

for j=1:5

x1=(B(1)-(A(1,2)*i(2))-(A(1,3)*i(3)))/A(1,1);

i(1)=x1;

x2=(B(2)-(A(2,1)*i(1))-(A(2,3)*i(3)))/A(2,2);

i(2)=x2;

x3=(B(3)-(A(3,1)*i(1))-(A(3,2)*i(2)))/A(3,3);

i(3)=x3;

b=i;

disp(b)

end

Applied Mathematics-I 9