Plasmids / Comments / Source
pRS425 / 2μ-LEU2 / [1]
pBTM116 / 2μ-TRP1-PADH1-LexA / [2]
pLexA-Lamin / 2μ-TRP1-PADH1-LexA-Lamin / [2]
pLexA-MCycE / 2μ-TRP1-PADH1-LexA-CyclinE-mut / [3]
pFvL23 / 2μ-TRP1-PADH1-LexA-Dot1 / This study
pL3 (pLexA-Adr1415-467) / 2μ-LEU2-PADH1-LexA-ADR1-AD (415-467) / [4]
pRQ12 (pLexA-Gcn5) / 2μ-LEU2-PADH1-LexA-GCN5 / [4]
pFvL232 / 2μ-LEU2-PADH1-LexA-V5 / This study
pFvL909 / 2μ-LEU2-PADH1-LexA-V5-NLS / This study
pFvL230 / 2μ-LEU2-PADH1-LexA-V5-Dot1 / This study
pFvL908 / 2μ-LEU2-PADH1-LexA-V5-Dot1G401R / This study
pFvL905 / 2μ-LEU2-PADH1-LexA-V5-Dot11-237 / This study
pFvL913 / 2μ-LEU2-PADH1-LexA-V5-Dot11-172 / This study
pFvL901 / 2μ-LEU2-PADH1-LexA-V5-NLS-Dot1172-582 / This study
pIS001 / 2μ-LEU2-PADH1-LexA-V5-Dot1-NLS-Dot1172-582 G401R / This study
pFvL921 / 2μ-LEU2-PADH1-LexA-V5-RPD3 / This study
pFvL250 / 2μ-LEU2-PADH1-LexA-V5-Ecm5-HA-TAP / This study
pFvL925 / 2μ-LEU2-PADH1-LexA-V5-hDot11-430 / This study
pFvL927 / 2μ-LEU2-PADH1-LexA-V5-hDot1318-430 / This study
pRS315 / CEN-LEU2-PADH1 / [5]
pFvL914 / CEN-LEU2-PADH1-LexA-V5-Dot1 / This study
pFvL916 / CEN-LEU2-PADH1-LexA-V5-Dot1G401R / This study
pMP3 / CEN-TRP1-HHF2-HHT2 / [6]
pFvL87 / CEN-TRP1-HHF2-HHT2-K79A / [6]
pFvL88 / CEN-TRP1-HHF2-HHT2-K79R / This study
pRS414 Gcn5 / CEN-TRP1-GCN5 / [7]
pRS414 Gcn5 F221A / CEN-TRP1-GCN5F221A / [7]
pRS305 / CEN-LEU2 / [5]
pYMR176 / 2μ-URA3-pGAL-MORF-HIS-HA-TAP / Open Biosystems
pFvl99 / 2μ-NatMX / This study
pFvl100 / 2μ-HphMX / This study
pRS400 / 2μ-KanMX / [5]
pAG25 / 2μ-pTEF-NatMX-tTEF / [8]
pAG32 / 2μ-pTEF-HphMX-tTEF / [8]
pVIIL-URA3-LexAS3-TEL / URA3-LexO3-TEL-VIIL / [9]
pVIIL-URA3-LexAS2-TEL / URA3-LexO2-TEL-VIIL / [9]
pADH4UCA-IV / URA3-TEL-VIIL / [10]
pT7 / LexO10-URA3-TEL-VIIL / [4]

1. Christianson T, Sikorski R, Dante M, Shero J, Hieter P: Multifunctional yeast high-copy-number shuttle vectors. Gene 1992, 110:119-122.

2. Bartel P, Chien CT, Sternglanz R, Fields S: Elimination of false positives that arise in using the two-hybrid system. Biotechniques 1993, 14:920-924.

3. Singer J, Gurian-West M, Clurman B, Roberts J: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 1999, 13:2375-2387.

4. Bi X, Yu Q, Sandmeier JJ, Zou Y: Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol Cell Biol 2004, 24:2118-2131.

5. Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122:19-27.

6. van Leeuwen F, Gafken PR, Gottschling DE: Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002, 109:745-756.

7. van Oevelen CJ, van Teeffelen HA, van Werven FJ, Timmers HT: Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem 2006, 281:4523-4531.

8. Goldstein AL, McCusker JH: Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 1999, 15:1541-1553.

9. Lustig AJ, Liu C, Zhang C, Hanish JP: Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol Cell Biol 1996, 16:2483-2495.

10. Gottschling DE, Aparicio OM, Billington BL, Zakian VA: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 1990, 63:751-762.