Chapter 13

13.2 Similarities in structure define the intermediate filament family

Review

Steinert, P. M., and Parry, D. A., 1985. Intermediate filaments: conformity and diversity of expression and structure. Annu. Rev. Cell Biol. v. 1 p. 41–65.

Research

Sun, T. T., Eichner, R., Nelson, W. G., Tseng, S. C., Weiss, R. A., Jarvinen, M., and Woodcock-Mitchell, J., 1983. Keratin classes: molecular markers for different types of epithelial differentiation. J. Invest. Dermatol. v. 81 p. 109s–115s.

Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepler, R., 1982. The catalogue of human cytokeratin polypeptides: Patterns of expression of specific cytokeratins in normal epithelia, tumors and cultured cells. Cellv. 31 p. 11–24.

Hatzfeld, M., and Weber, K., 1990. The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: Use of site–specific mutagenesis and recombinant protein expression.J. Cell Biol. v. 110 p. 1199–1210.

Lu, X., and Lane, E. B., 1990. Retrovirus–mediated transgenic keratin expression in cultured fibroblasts: Specific domain functions in keratin stabilization and filament formation. Cellv. 62 p. 681–696.

Rogers, M. A., Winter, H., Langbein, L., Bleiler, R., and Schweizer, J., 2004. The human type I keratin gene family: Characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation v. 72 p. 527–540.

Rogers, M. A., Edler, L., Winter, H., Langbein, L., Beckmann, I., and Schweizer, J., 2005. Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13.J. Invest.

Dermatol. v. 124 p. 536–544.

13.3 Intermediate filament subunits assemble with high affinity into strain–resistant structures

Review

Fuchs, E., and Cleveland, D. W., 1998. A structural scaffolding of intermediate filaments in health and disease.Science v. 279 p. 514–519.

Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U., and Magin, T. M., 2003. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int. Rev. Cytol.v. 223 p. 83–175.

Research

Crick, F. H. C., 1952. Is alpha–keratin a coiled coil? Nature v. 170 p. 882–883.

Janmey, P. A., Euteneuer, U., Traub, P., and Schliwa, M.,1991. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. v. 113 p. 155–160.

Ma, L., Xu, J., Coulombe, P. A., and Wirtz, D., 1999. Keratin filament suspensions show unique micromechanical properties. J. Biol. Chem.v. 274 p. 19145–19151.

13.4 Two-thirds of all intermediate filament proteins are keratins

Review

Coulombe, P. A., and Omary, M. B., 2002. ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. v. 14 p. 110–122.

Lane, E. B., and Alexander, C. M., 1990. Use of keratin antibodies in tumor diagnosis. Semin. Cancer Biol. v. 1 p. 165–179.

Research

Sun, T. T., Eichner, R., Nelson, W. G., Tseng, S. C., Weiss, R. A., Jarvinen, M., and Woodcock–Mitchell, J., 1983. Keratin classes: molecular markers for different types of epithelial differentiation. J. Invest. Dermatol. v. 81 p. 109s–115s.

Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepler, R., 1982. The catologue of human cytokeratin polypeptides: Patterns of expression of specific cytokeratins in normal epithelia, tumors and cultured cells. Cell v. 31 p. 11–24.

Purkis, P. E., Steel, J. B., Mackenzie, I. C., Nathrath, W. B., Leigh, I. M., and Lane,
E. B., 1990. Antibody markers of basal cells in complex epithelia. J. Cell Sci. v. 97 p. 39–50.

Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., Maltais, L., Omary, M. B., Parry, D. A., Rogers, M. A., and Wright, M. W., 2006. New consensus nomenclature for mammalian keratins. J. Cell Biol. v. 174 p. 169–174.

13.5 Mutations in keratins cause epithelial fragility

Review

Fuchs, E., and Cleveland, D. W., 1998. A structural scaffolding of intermediate filaments in health and disease. Sciencev. 279 p. 514–519.

Owens, D. W., and Lane, E. B., 2004. Keratin mutations and intestinal pathology. J. Pathol. v. 204 p. 377–385.

Irvine, A. D., and McLean, W. H. I., 1999. Human keratin diseases: The increasing spectrum of disease and subtlety of the phenotype–genotype correlation. Br.J. Dermatol. v. 140 p. 815–828.

Omary, M. B., Coulombe, P. A., and McLean, W. H. (2004). Intermediate filament proteins and their associated diseases. N. Engl. J. Med. v. 351 p. 2087–2100.

Research

Bonifas, J. M., Rothman, A. L., and Epstein, E. H., Jr., 1991. Epidermolysis bullosa simplex: Evidence in two families for keratin gene abnormalities. Science v. 254
p. 1202–1205.

Coulombe, P. A., Hutton, M. E., Letai, A., Hebert, A., Paller, A. S., and Fuchs, E., 1991. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses. Cellv. 66 p. 1301–1311.

Lane, E. B., Rugg, E. L., Navsaria, H., Leigh, I. M., Heagerty, A. H., Ishida–Yamamoto, A., and Eady, R. A., 1992. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature v. 356 p. 244–246.

Owens, D. W., Wilson, N. J., Hill, A. J., Rugg, E. L., Porter, R. M., Hutcheson, A. M., Quinlan, R. A., van Heel, D., Parkes, M., Jewell, D. P., et al., 2004. Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J. Cell Sci. v. 117 p. 1989–1999.

Ku, N. O., Gish, R., Wright, T. L., and Omary, M. B., 2001. Keratin 8 mutations in patients with cryptogenic liver disease. N. Engl. J. Med. v. 344 p. 1580–1587.

13.6 Intermediate filaments of nerve, muscle, and connective tissue often show overlapping expression

Review

Magin, T. M., Reichelt, J., and Hatzfeld, M., 2004. Emerging functions: Diseases and animal models reshape our view of the cytoskeleton. Exp. Cell Res. v. 301
p. 91–102.

Al–Chalabi, A., and Miller, C. C., 2003. Neurofilaments and neurological disease. Bioessaysv. 25 p. 346–355.

Cairns, N. J., Lee, V. M., and Trojanowski, J. Q., 2004. The cytoskeleton in neurodegenerative diseases. J. Pathol. v. 204 p. 438–449.

Lane, E. B., and Pekny, M. (2004). Stress models for the study of intermediate filament function. Methods Cell Biol. v. 78 p. 229–264.

Research

Hesse, M., Magin, T. M., and Weber, K., 2001. Genes for intermediate filament proteins and the draft sequence of the human genome: Novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J. Cell Sci. v. 114 p. 2569–2575.

Balogh, J., Merisckay, M., Li, Z., Paulin, D., and Arner, A., 2002. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc. Res. v. 53 p. 439–450.

Weisleder, N., Taffet, G. E., and Capetanaki, Y., 2004. Bcl–2 overexpression corrects

mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc. Natl. Acad. Sci. U.S.A. v. 101 p. 769–774.

Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C. H., and Frisen, J. 1999. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol.v. 145 p. 503–514.

13.7 Lamin intermediate filaments reinforce the nuclear envelope

Review

Mattout, A., Dechat, T., Adam, S. A., Goldman, R. D., Gruenbaum, Y., 2006. Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. v. 18 p. 335–341.

Burke, B., and Stewart, C. L., 2006. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Ann. Rev. Genom. Hum. Genet. v. 7 p. 369-405.

Smith, E. D., Kudlow, B. A., Frock, R. L., and Kennedy, B. K., 2005. A–type nuclear lamins, progerias and other degenerative disorders. Mech. Ageing Dev. v. 126
p. 447–460.

Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B., and Hutchison, C. J., 2006. Nuclear lamins: Laminopathies and their role in premature ageing. Physiol. Rev. v. 86 p. 967–1008.

Broers, J. L., Hutchison, C. J., and Ramaekers, F. C., 2004. Laminopathies. J. Pathol. v. 204 p. 478–488.

Zastrow, M. S., Vlcek, S., and Wilson, K. L., 2004. Proteins that bind A–type lamins: Integrating isolated clues. J. Cell Sci. v. 117 p. 979–987.

Research

Erber, A., Riemer, D., Bovenschulte, M., and Weber, K., 1998. Molecular phylogeny of metazoan intermediate filament proteins. J. Mol. Evol. v. 47 p. 751–762.

Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., Stewart, C. L., and Burke, B., 1999. Loss of A–type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. v. 147 p. 913–920.

Vergnes, L., Peterfy, M., Bergo, M. O., Young, S. G., Reue, K., 2004. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. U.S.A. v. 101 p. 10428–10433.

13.8 Even the divergent lens filament proteins are conserved in evolution

Review

Perng, M. D., Sandilands, A., Kuszak, J., Dahm, R., Wegener, A., Prescott, A. R., and Quinlan, R. A., 2004. The intermediate filament systems in the eye lens. Methods Cell Biol. v. 78 p. 597–624.

Research

Zimek, A., Stick, R., and Weber, K. (2003). Genes coding for intermediate filament proteins: Common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J. Cell Sci. 116, 2295–2302.

Conley, Y. P., Erturk, D., Keverline, A., Mah, T. S., Keravala, A., Barnes, L. R., Bruchis, A., Hess, J. F., FitzGerald, P. G., Weeks, D. E., Ferrell, R. E., and Gorin, M. B., 2000. A juvenile-onset, progressive cataract locus on chromosome 3q21-22 is associated with a missense mutations in the beaded filament structural protein-2. Am. J. Hum. Genet. v. 66 p. 1426–1431.

Sandilands, A., Prescott, A. R., Wegener, A., Zoltoski, R. K., Hutcheson, A. M., Masaki, S.,

Kuszak, J. R., and Quinlan, R. A., 2003. Knockout of the intermediate filament proteins CP49 destabilises the lens fibre cell cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp. Eye Res. v. 76 p. 385–391.

13.9 Post-translational modifications regulate and remodel intermediate filament networks

Review

Coulombe, P. A., and Omary, M. B., 2002. ‘Hard’ and ‘soft’ principles defining the

structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell

Biol. v. 14 p. 110–122.

Omary, M. B., Ku, N. O., Liao, J., and Price, D., 1998. Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. v. 31 p. 105–140.

Omary, M. B., Ku, N. -O., Tao, G. Z., Toivola, D. M., Liao, J., 2006. ‘Heads and tails’ of intermediate filament phosphorylation: Multiple sites and functional insights. Trends Biochem. Sci. v. 31 p. 383–394.

Research

Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C., 1988. Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly–disassembly of desmin. J. Biol. Chem. v. 263 p. 5970–5978.

Ku, N.–O., Fu, H., and Omary, M. B., 2004. Raf–1 activation disrupts its binding to keratins during cell stress. J. Cell Biol. v. 166 p. 479–485.

13.10 Interacting proteins facilitate secondary functions of intermediate filaments

Review

Rezniczek, G. A., Janda, L., and Wiche, G., 2004. Plectin. Methods Cell Biol. v. 78 p. 721–755.

Ruhrberg, C., and Watt, F. M., 1997. The plakin family: Versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. Dev. v. 7 p. 392–397.

Hudson, T. Y., Fontao, L., Godsel, L. M., Choi, H. J., Huen, A. C., Borradori, L., Weis,
W. I., and Green, K. J. (2004). In vitro methods for investigating desmoplakin–intermediate filament interactions and their role in adhesive strength. Methods Cell Biol. v. 78 p. 757–786.

Research

Janda, L., Damborsky, J., Rezniczek, G. A., Wiche, G., 2001. Plectin repeats and modules: Strategic cysteines and their presumed impact on cytolinker functions. Bioessays. v. 23 p. 1064–1069.

Smith, F. J., Irvine, A. D., Terron-Kwiatkowski, A., Sandilands, A., Campbell, L. E., Zhao, Y., Liao, H., Evans, A. T., Goudie, D. R., Lewis-Jones, S., Arseculeratne, G., Munro, C. S., Sergeant, A., O‘Regan, G., Bale, S. J., Compton, J. G., DiGiovanna, J. J., Presland, R. B., Fleckman, P., McLean, W. H., 2006. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. v. 38 p. 337–342.

13.11 Intermediate filament genes are represented through metazoan evolution

Research

Erber, A., Riemer, D., Bovenschulte, M., and Weber, K., 1998. Molecular phylogeny of metazoan intermediate filament proteins. J. Mol. Evol. v. 47 p. 751–762.

Karabinos, A., Zimek, A., and Weber, K., 2004. The genome of the early chordate Ciona intestinalisencodes only five cytoplasmic intermediate filament proteins including a single type I and type II keratin and a unique IF–annexin fusion protein. Gene v. 326 p. 123–129.

Zimek, A., Stick, R., and Weber, K., 2003. Genes coding for intermediate filament proteins: Common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J. Cell Sci. 116, 2295–2302.