Incorporation of the time-varying postprandial increase in splanchnic blood flow into a PBPK model to predict the effect of food on the pharmacokinetics of orally administered high extraction drugs.

Rachel H. Rose1, David B. Turner1, Sibylle Neuhoff1, Masoud Jamei1

1 Simcyp Ltd (a Certara Company), Blades Enterprise Centre, Sheffield, UK

Supplementary Tables

Table S1. Summary of the study design for simulated studies. All doses were given as a single oral dose.

PK Study / Dose (mg) / Age range (years) / n / % female / Reference
Propranolol / 80 / 24-29 / 6 / 0 / (1)
Propranolol / 80 / 26-43 / 13 / 15 / (2)
Propranolol / 80 / 22-32 / 6 / 0 / (3)
Propranolol / 80 / 19-53 / 11 / 100 / (4)
Propranolol / 80 / 19-39 / 7 / 14 / (5)
Propranolol / 40 / 18-39 / 10 / 50 / (6)
Propranolol/quinidine / 80/50 / 20-37 / 6 / 0 / (7)
Ibrutinib* / 420 / 24-55 / 44 / 14 / (8) - Study 1
Ibrutinib / 560 / 34-55 / 8 / 62.5 / (8) - Study 3

* The clinical study included individuals from multiple races (27.3% white, 2.3% Asian, 65.9% black, 4.5% mixed), but this wasn’t accounted for in the simulations and all individuals were simulated using the built-in Simcyp North European Caucasian population.

Table S2. Geometric mean and range of the fed/fasted AUC ratio and Cmax ratios of propranolol for 20 simulated trials and clinical studies. The number of simulated/ reported individuals are shown in brackets. Trial group number corresponds to Figure 6.

Study / Trial group (n=10) / Fed/fasted AUC ratio / Fed/fasted Cmax ratio
Geomean / Min / Max / Geomean / Min / Max
Simulation / 1 / 1.21 / 1.11 / 1.27 / 1.25 / 1.16 / 1.32
2 / 1.22 / 1.04 / 1.41 / 1.29 / 1.21 / 1.46
3 / 1.22 / 1.12 / 1.34 / 1.25 / 1.21 / 1.42
4 / 1.28 / 1.17 / 1.52 / 1.33 / 1.20 / 1.57
5 / 1.25 / 1.15 / 1.36 / 1.31 / 1.19 / 1.49
6 / 1.21 / 0.95 / 1.37 / 1.29 / 1.16 / 1.44
7 / 1.22 / 1.13 / 1.37 / 1.26 / 1.17 / 1.40
8 / 1.26 / 1.13 / 1.48 / 1.33 / 1.25 / 1.52
9 / 1.26 / 1.14 / 1.39 / 1.29 / 1.15 / 1.43
10 / 1.24 / 1.13 / 1.34 / 1.29 / 1.13 / 1.46
11 / 1.26 / 1.14 / 1.34 / 1.31 / 1.19 / 1.41
12 / 1.24 / 1.09 / 1.42 / 1.33 / 1.22 / 1.50
13 / 1.22 / 0.99 / 1.38 / 1.30 / 1.22 / 1.42
14 / 1.26 / 1.16 / 1.38 / 1.31 / 1.22 / 1.43
15 / 1.25 / 1.18 / 1.34 / 1.30 / 1.20 / 1.42
16 / 1.22 / 1.00 / 1.37 / 1.29 / 1.21 / 1.41
17 / 1.25 / 1.14 / 1.37 / 1.31 / 1.20 / 1.48
18 / 1.24 / 1.12 / 1.36 / 1.28 / 1.17 / 1.43
19 / 1.25 / 1.14 / 1.35 / 1.30 / 1.17 / 1.39
20 / 1.21 / 1.09 / 1.32 / 1.24 / 1.12 / 1.35
Total population (n=200) / 1.24 / 0.95 / 1.52 / 1.29 / 1.12 / 1.57
Liedholm 1986 (9) / 21 (n=11) / 1.69 / 0.89 / 3.02 / 1.82 / 0.76 / 2.98
Liedholm 1990 (4)a / 22 (n=11) / 1.24 / 0.29 / 3.54 / 1.40 / 0.38 / 4.62
Liedholm 1990 (4)b / 23 (n=10) / 0.92 / 0.49 / 1.72 / 0.98 / 0.59 / 2.00
McLean 1981 (10)a / 24 (n=8) / 1.97 / 1.30 / 3.90 / 2.29 / 1.06 / 6.54
McLean 1981 (10)b / 25 (n=8) / 1.68 / 0.70 / 4.59 / 1.48 / 0.69 / 6.28
Meleander 1977 (2) / 26 (n=7) / 1.47 / 0.89 / 2.25 / 1.55 / 0.97 / 2.00
Olanoff 1986 (1) / 27 (n=6) / 1.21 / 0.73 / 1.85 / 1.42 / 0.48 / 3.09
Walle 1981 (3) / 28 (n=6) / 1.50 / 1.02 / 1.92 / 1.70 / NA / NA

a High protein meal; b High carbohydrate meal, as defined in publication. Measurements for the different meal types were taken in the same subjects for each meal type.

Table S3. Fed/fasted AUC and Cmax ratios (geometric mean and 90% confidence interval) of ibrutinib for 20 simulated trials and reported by de Jong et al., 2015 (study 1). The number of simulated/reported individuals is shown in brackets.

Trial group (n=44) / Fed/fasted AUC ratio / Fed/fasted Cmax ratio
Geomean (90% CI) / Geomean (90% CI)
1 / 1.96 / (1.89, 2.04) / 1.81 / (1.73, 1.89)
2 / 1.92 / (1.86, 1.98) / 1.77 / (1.71, 1.84)
3 / 2.12 / (2.02, 2.22) / 1.96 / (1.87, 2.06)
4 / 1.95 / (1.87, 2.03) / 1.82 / (1.74, 1.90)
5 / 2.05 / (1.96, 2.15) / 1.89 / (1.79, 1.99)
6 / 2.01 / (1.94, 2.09) / 1.86 / (1.78, 1.95)
7 / 2.00 / (1.91, 2.08) / 1.84 / (1.75, 1.94)
8 / 1.99 / (1.91, 2.08) / 1.84 / (1.75, 1.93)
9 / 2.01 / (1.91, 2.08) / 1.88 / (1.79, 1.98)
10 / 2.00 / (1.93, 2.08) / 1.83 / (1.76, 1.90)
11 / 1.99 / (1.91, 2.08) / 1.81 / (1.72, 1.90)
12 / 2.07 / (1.98, 2.17) / 1.91 / (1.81, 2.02)
13 / 1.99 / (1.92, 2.06) / 1.84 / (1.77, 1.92)
14 / 1.99 / (1.92, 2.07) / 1.84 / (1.77, 1.92)
15 / 2.04 / (1.97, 2.12) / 1.89 / (1.81, 1.97)
16 / 2.05 / (1.94, 2.15) / 1.85 / (1.74, 1.95)
17 / 2.04 / (1.95, 2.15) / 1.87 / (1.78, 1.96)
18 / 1.97 / (1.90, 2.05) / 1.77 / (1.69, 1.86)
19 / 1.86 / (1.79, 1.93) / 1.68 / (1.61, 1.76)
20 / 2.05 / (1.95, 2.15) / 1.88 / (1.78, 1.99)
Population (n=880) / 2.00 / 1.84
de Jong 2015 (Study 1; n=44) / 1.86 / (1.69, 2.04) / 3.15 / (2.72, 3.65)

Table S4. Fed/fasted AUC and Cmax ratios (geometric mean and 90% confidence interval) of ibrutinib for 20 simulated trials and reported by de Jong et al., 2015 (study 3). The number of simulated/reported individuals is shown in brackets.

Trial group (n=8) / Fed/fasted AUC ratio / Fed/fasted Cmax ratio
Geomean (90% CI) / Geomean (90% CI)
1 / 2.16 / (1.97, 2.38) / 1.91 / (1.76, 2.08)
2 / 1.99 / (1.73, 2.31) / 1.77 / (1.49, 2.11)
3 / 1.92 / (1.81, 2.04) / 1.75 / (1.63, 1.87)
4 / 2.06 / (1.81, 2.34) / 1.90 / (1.68, 2.13)
5 / 2.00 / (1.78, 2.23) / 1.83 / (1.64, 2.05)
6 / 1.87 / (1.74, 2.01) / 1.75 / (1.58, 1.93)
7 / 1.90 / (1.62, 2.23) / 1.68 / (1.40, 2.01)
8 / 1.98 / (1.82, 2.15) / 1.90 / (1.71, 2.10)
9 / 1.94 / (1.63, 2.31) / 1.78 / (1.45, 2.17)
10 / 2.00 / (1.78, 2.23) / 1.84 / (1.64, 2.06)
11 / 2.00 / (1.84, 2.17) / 1.88 / (1.72, 2.05)
12 / 2.07 / (1.88, 2.28) / 1.91 / (1.71, 2.13)
13 / 1.96 / (1.79, 2.14) / 1.86 / (1.66, 2.08)
14 / 2.14 / (1.90, 2.41) / 2.02 / (1.81, 2.26)
15 / 2.08 / (1.86, 2.33) / 1.95 / (1.70, 2.24)
16 / 2.05 / (1.84, 2.28) / 1.92 / (1.75, 2.11)
17 / 2.10 / (1.93, 2.28) / 1.87 / (1.73, 2.04)
18 / 2.10 / (1.83, 2.41) / 1.89 / (1.60, 2.23)
19 / 2.17 / (1.89, 2.48) / 2.03 / (1.80, 2.28)
20 / 2.01 / (1.86, 2.18) / 1.88 / (1.71, 2.07)
Population (n=160) / 2.02 / 1.86
de Jong 2015 (Study 3; n=8) / 2.23 / (1.67, 2.97) / 3.52 / (2.13, 5.82)

References

1. Olanoff LS, Walle T, Cowart TD, Walle UK, Oexmann MJ, Conradi EC. Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther. 1986;40(4):408-14.

2. Melander A, Danielson K, Schersten B, Wahlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22(1):108-12.

3. Walle T, Fagan TC, Walle UK, Oexmann MJ, Conradi EC, Gaffney TE. Food-induced increase in propranolol bioavailability--relationship to protein and effects on metabolites. Clin Pharmacol Ther. 1981;30(6):790-5.

4. Liedholm H, Wahlin-Boll E, Melander A. Mechanisms and variations in the food effect on propranolol bioavailability. Eur J Clin Pharmacol. 1990;38(5):469-75.

5. Cid E, Mella F, Lucchini L, Carcamo M, Monasterio J. Plasma concentrations and bioavailability of propranolol by oral, rectal, and intravenous administration in man. Biopharm Drug Dispos. 1986;7(6):559-66.

6. Parsons RL, Kaye CM, Raymond K, Trounce JR, Turner P. Absorption of propranolol and practolol in Coeliac disease. Gut. 1976;17(2):139-43.

7. Zhou HH, Anthony LB, Roden DM, Wood AJ. Quinidine reduces clearance of (+)-propranolol more than (-)-propranolol through marked reduction in 4-hydroxylation. Clin Pharmacol Ther. 1990;47(6):686-93.

8. de Jong J, Sukbuntherng J, Skee D, Murphy J, O'Brien S, Byrd JC, et al. The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia. Cancer Chemother Pharmacol. 2015;75(5):907-16.

9. Liedholm H, Melander A. Concomitant food intake can increase the bioavailability of propranolol by transient inhibition of its presystemic primary conjugation. Clin Pharmacol Ther. 1986;40(1):29-36.

10. McLean AJ, Isbister C, Bobik A, Dudley FJ. Reduction of first-pass hepatic clearance of propranolol by food. Clin Pharmacol Ther. 1981;30(1):31-4.