Supporting Information
Highly efficient synthesis of quinoxaline derivatives from 1,2-benzenediamine and α-aminoxylated dicarbonyl compounds
Jianwei Yana,b,* Yanhong Xub, Fangfang Zhuangb, Jie Tianb, Guisheng Zhanga,*
a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China;
b School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
E-mail: ; .
Table of Contents
Contents
1.References for known compounds s2
2.The synthesis and characterization data of α-aminoxylated dicarbonyl compounds s2
3.1H and 13C NMR spectra of all new products s6
1. Referencefor known compounds
Most of the products are reported by other groups (3aa1, 3ab1, 3ad2, 3af1, 3ag1, 3ah1, 3ai3, 3aj4, 3ak5, 4ba1, 4ca6,4ia7 and 68). The 1HNMR of these products were provided.
1. R. V. Hoffman, H. O. Kim, A. L. Wilson, theJournal of Organic Chemistry1990, 55, 2820-2822.
2. O. A. Attanasi, L. D. Crescentini, P. Filippone, F. Mantellini, S. Santeusanio, Helvetica Chimica Acta 2001, 84, 2379-2386.
3. B. S. P. A. Kumar, B. Madhav, K. H. V. Reddy, Y. V. D. Nageswar, Tetrahedron Letters 2011, 52, 2862–2865.
4. B. S. P. A. Kumar, B. Madhav, K. H. V. Reddy, Y. V. D. Nageswar, Tetrahedron Letters 2011, 52, 2862–2865.
5. P. Haldar, B. Dutta, J. Guin, J. K. Ray, Tetrahedron Letters 2007, 48, 5855-5857.
6.O. N. Chupakhin, S. K. Kotovskaya, N. M. Perova, Z. M. Baskakova, V. N. Charushin, Chemistry of Heterocyclic Compounds 1999, 35, 459-469.
7.A. Domitila, O. A. Attanasi, F. Paolino, I. Roberto, L. Samuele, M. Fabio, P. Francisco, J. M. Santos, De Los, the Journal of Organic Chemistry 2006, 71, 5897-5905.
8.T. Kano, S. Song, Y. Kubota, K. Maruoka, Angewandte Chemie International Edition 2012, 124, 1217-1220.
2. The synthesis and characterization data of α-oxy-2,2,6,6-tetramethylpiperidin-1-yl dicarbonyl compounds
The starting material 2a-2k were prepared according to themethodreported in the literature (Feng, P., et al. Synlett 2014,25 (19), 2717-2720).
Ethyl 3-oxo-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (2a)
1H NMR (400 MHz, CDCl3) δ 4.79 (s, 1H), 4.25 – 4.17 (m, 2H), 2.29 (s, 3H), 1.57 – 1.31 (m, 6H), 1.26 (t, J = 7.1 Hz, 3H), 1.18 (s, 3H), 1.17 (s, 3H), 1.04 (s, 3H), 0.98 (s, 3H).
Methyl 3-oxo-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanoate (2b)
1H NMR (400 MHz, CDCl3) δ 4.80 (s, 1H), 3.73 (s, 3H), 2.29 (s, 3H), 1.57 – 1.29 (m, 6H), 1.17 (s, 6H), 1.01 (s, 3H), 0.97 (s, 3H).
6,6-Dimethyl-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)heptane-2,4-dione (2c)
1H NMR (400 MHz, CDCl3) δ 4.67 (s, 1H), 2.26 (s, 3H), 1.52 – 1.33 (m, 15H), 1.18 (s, 3H), 1.14 (s, 3H), 1.08 (s, 3H), 0.94 (s, 3H).
Benzyl 3-oxo-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)butanoate (2d)
1H NMR (400 MHz, CDCl3) δ 7.32 (s, 5H), 5.16 (s, 2H), 4.84 (s, 1H), 2.23 (s, 3H), 1.55 – 1.32 (m, 6H), 1.15 (s, 6H), 0.96 (s, 6H).
Ethyl 3-oxo-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (2e)
1H NMR (400 MHz, CDCl3) δ 4.82 (s, 1H), 4.18 (dd, J = 6.9, 3.1 Hz, 2H), 2.86 – 2.73 (m, 1H), 2.62 – 2.50 (m, 1H), 1.53 – 1.37 (m, 5H), 1.29 – 1.22 (m, 4H), 1.17 (s, 3H), 1.16 (s, 3H), 1.07 – 1.01 (m, 6H), 0.94 (s, 3H).
Ethyl 4-methyl-3-oxo-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentanoate (2f)
1H NMR (400 MHz, CDCl3) δ 4.97 (d, J = 1.7 Hz, 1H), 4.18 (q, J = 6.8 Hz, 2H), 3.10 – 2.99 (m, 1H), 1.55 – 1.32 (m, 6H), 1.24 (t, J = 7.1 Hz, 3H), 1.16 (s, 6H), 1.09 (d, J = 7.0 Hz, 3H), 1.06 – 1.00 (m, 6H), 0.94 (s, 3H).
Ethyl 3-oxo-3-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propanoate (2g)
1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 5.38 (s, 1H), 4.13 (q, J = 6.7 Hz, 2H), 1.55 – 1.38 (m, 3H),1.37 – 1.32 (m, 2H), 1.25 (s, 4H), 1.16 – 1.08 (m, 6H), 0.95 (s, 3H), 0.79 (s, 3H).
3-((2,2,6,6-Tetramethylpiperidin-1-yl)oxy)pentane-2,4-dione (2h)
1H NMR (400 MHz, CDCl3) δ 4.91 (s, 1H), 2.20 (s, 6H), 1.45 – 1.36 (m, 6H), 1.17 (s, 6H), 0.95 (s, 6H).
1,3-Diphenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propane-1,3-dione (2i)
1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 7.6 Hz, 4H), 7.53 (t, J = 7.3 Hz, 2H), 7.43 (t, J = 7.6 Hz, 4H), 6.27 (s, 1H), 1.60 – 1.40 (m, 6H), 1.11 (s, 6H), 0.92 (s, 6H).
Dimethyl 2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)malonate (2j)
1H NMR (400 MHz, CDCl3) δ 4.93 (s, 1H), 3.76 (s, 6H), 1.56 – 1.29 (m, 6H), 1.16 (s, 6H), 1.02 (s, 6H).
Diethyl 2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)malonate (2k)
1H NMR (400 MHz, CDCl3) δ 4.90 (s, 1H), 4.26 – 4.19 (m, 4H), 1.56 – 1.39 (m, 6H), 1.26 (t, J = 7.1 Hz, 6H), 1.17 (s, 6H), 1.05 (s, 6H).
3. 1H, and 13C NMR spectra of all new products
1H NMR spectrum of 3acin CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 3ac in CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of 3ae in CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 3aein CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of4da/4da′in CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 4da/4da′in CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of4ea/4ea′in CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 4ea/4ea′in CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of 4fa/4fa′in CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 4fa/4fa′in CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of 4ga/4ga′in CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 4ga/4ga′in CDCl3 at 297 K (δ in ppm).
1H NMR spectrum of 4jain CDCl3 at 297 K (δ in ppm).
13C NMR spectrum of 4jain CDCl3 at 297 K (δ in ppm).
s1