CHAPTERNO.1
REALNUMBERS(Weightage10 –11Marks)
BASICCONCEPTS:
1.Rationalnumbersarenumberswhichcanbewrittenintheformof,where both‘p’and‘q’are integersandq≠ 0.
2.Irrationalnumbersare numberswhichcan’tbeexpressintheformof
rationalnumbers.
3.The set of rational and irrational numbers together are called Realnumbers.
4.ThefundamentaltheoremofArithmetic:“Everycompositenumbercanbeexpressedasaproductofprimesandthisfactorizationisunique(apartfromtheorderinwhichtheprimefactorsoccur).
5.H.C.F :Productofthesmallestpowersofeachcommonprimefactorsinthenumbers.
6.L.C.M : Product of the greatest powers of each prime factors in thenumbers.
7.TheproductoftwopositiveintegersisequaltotheproductoftheirL.C.M
andH.C.F.
8.Let x=bearationalnumbers, suchthattheprimefactorizationof“q”isoftheform2n.5m wheren,marenonnegativeintegers. Then‘x’hasa
decimalexpansionwhichterminates
9.If ‘q’isnotintheformof 2n.5mthenthat‘x’hasadecimalexpansionwhichisnon–terminatingrepeating(recurring)
10.(i)a,xaretwopositiveintegersanda≠1and x=an then= n
(ii)Logarithmof anynumbertoagivenbase isthevalueofindextowhichthe basemustbe raisedto getthegivennumber.
11.LAWSOFLOGARITHMS:
i.=+
ii.=-
iii.=m.
iv.=1
v.=0
1
12.
Rational Numbers(Q)Integers(Z)
WholeNumbers(W)Natural Numbers(N)
IrrationalNumbers
( QI)
Real Numbers (R)
NWZQRR =QQI
SHORTANSWERQUESTIONS(S.A.Q)(2MARKS)
1.FindtheL.C.MandH.C.Fof220and284byapplyingtheprimefactorizationmethod?
2.Withoutactuallyperforminglongdivisionexpressthefollowinginthe
decimalexpression
i.ii.
3.Expandthefollowinglogarithms
i.
ii.
iii.iv.
4.SimplifyeachofthefollowingexpressionaslogN.
i.Log2+log5
ii.Log10+ 2log3–log 2
iii.3log4
iv.2log 3–3log
VERYSHORTANSWERQUESTIONS(V.S.A.Q)(1MARK)
5.Express156asaproductoftheprimefactors.
6.Showonthenumberline.
7.Express0.375inform
8.=xexpress thisinthe powers
2