ARMY

PROPOSALSUBMITTAL

TheUnitedStatesArmyResearchOffice(ARO)managestheArmy’sSmallBusinessTechnologyTransfer(STTR)Program. Thefollowingpageslisttopicsthathavebeenapprovedforthefiscalyear2008STTRprogram. Proposalsaddressingtheseareaswillbeacceptedforconsiderationiftheyarereceivednolaterthantheclosingdateandhourofthissolicitation.

TheArmyanticipatesfundingsufficienttoawardoneortwoSTTRPhaseIcontractstosmallbusinesseswiththeirpartnerresearchinstitutionsineachtopicarea. Awardswillbemadeonthebasisoftechnicalevaluationsusingthecriteriacontainedinthesolicitation,withintheboundsofSTTRfundsavailabletotheArmy. Ifnoproposalswithinagivenareameritsupportrelativetothoseinotherareas,theArmywillnotawardanycontractsforthattopic. PhaseIcontractsarelimitedtoamaximumof$100,000overaperiodnottoexceedsixmonths.

OnlyGovernmentpersonnelwillevaluateproposalswiththeexceptionoftechnicalpersonnelfromScienceApplicationsInternationalCorporation(SAIC)andAzimuth,Inc.whowillprovideAdvisoryandAssistanceServicestotheArmy,providingtechnicalanalysisintheevaluationofproposalssubmittedagainstArmytopicnumbers:A08–T035, A08–T038andA08–T041. IndividualsfromScienceApplicationsInternationalCorporation(SAIC)andAzimuth,Inc.willbeauthorizedaccesstoonlythoseportionsoftheproposaldataanddiscussionsthatarenecessarytoenablethemtoperformtheirrespectiveduties.ThesefirmsareexpresslyprohibitedfromcompetingforSTTRawardsandfromscoringorrankingofproposalsorrecommendingtheselectionofasource. Inaccomplishingtheirdutiesrelatedtothesourceselectionprocess,theaforementionedfirmmayrequireaccesstoproprietaryinformationcontainedintheofferors'proposals.Therefore,pursuanttoFAR9.505-4,thesefirmsmustexecuteanagreementthatstatesthattheywill(1)protecttheofferors’informationfromunauthorizeduseordisclosureforaslongasitremainsproprietaryand(2)refrainfromusingtheinformationforanypurposeotherthanthatforwhichitwasfurnished. TheseagreementswillremainonfilewiththeArmy.

PleaseNote!

TheArmyrequiresthatyourentireproposalbesubmittedelectronicallythroughtheDoD-wideSBIR/STTRProposalSubmissionWebsite( AhardcopyisNOTrequired. HandorelectronicsignatureontheproposalisalsoNOTrequired.

TheDoD-wideSBIR/STTRProposalSubmissionsystem(availableat YoumustincludeaCompanyCommercializationReportaspartofeachproposalyousubmit;however,itdoesnotcountagainsttheproposalpagelimit. Ifyouhavenotupdatedyourcommercializationinformationinthepastyear,orneedtoreviewacopyofyourreport,visittheDoDSBIR/STTRProposalSubmissionsite. PleasenotethatimproperhandlingoftheCommercializationReportmayresultintheproposalbeingsubstantiallydelayedandthatinformationprovidedmayhaveadirectimpactonthereviewoftheproposal. Refertosection3.5datthefrontofthissolicitationfordetailedinstructionsontheCompanyCommercializationReport.

Ifyoucollaboratewithauniversity,pleasehighlighttheresearchthattheyaredoingandverifythattheworkisFUNDAMENTALRESEARCH.

Beremindedthatifyourproposalisselectedforaward,thetechnicalabstractanddiscussionofanticipatedbenefitswillbepubliclyreleasedontheInternet. Therefore,donotincludeproprietaryorclassifiedinformationinthesesections. DoDwillnotacceptclassifiedproposalsfortheSTTRProgram. NotealsothattheDoDwebsitecontainsdataonallDoDSBIR/STTRPhaseIandIIawardsgoingbackseveralyears. ThisinformationcanbeviewedontheDoDSBIR/STTRAwardsSearchwebsiteat

BaseduponprogressachievedunderaPhaseIcontract,utilizingthecriteriainSection4.3,afirmmaybeinvitedtosubmitaPhaseIIproposal(however,FastTrackPhaseIIproposalsdonotrequireinvitation–seeSection4.5ofthissolicitation). PhaseIIproposalsshouldbestructuredasfollows:thefirst10-12months(baseeffort)shouldbeapproximately$375,000;thesecond10-12monthsoffundingshouldalsobeapproximately$375,000. TheentirePhaseIIeffortshouldgenerallynotexceed$750,000.ContractstructureforthePhaseIIcontractisatthediscretionoftheArmy’sContractingOfficerafternegotiationswiththesmallbusiness.

TheArmydoesnotissueinterimoroptionfundingbetweenSTTRphaseIandIIefforts,butwillprovideacceleratedphaseIIproposalevaluationandcontractingforprojectsthatqualifyforfast-trackstatus.

ArmySTTRContractsmaybefullyfundedorfundedusingoptionsorincrementalfunding.

CONTRACTORMANPOWERREPORTING(CMR)(Note:ApplicableonlytoU.S.ArmyissuedSTTRcontracts)

AccountingforContractServices,otherwiseknownasContractorManpowerReporting(CMR),isaDepartmentofDefenseBusinessInitiativeCouncil(BIC)sponsoredprogramtoobtainbettervisibilityofthecontractorserviceworkforce. ThisreportingrequirementappliestoallSTTRcontractsissuedbyanArmyContractingOffice.

OfferorsareinstructedtoincludeanestimateforthecostofcomplyingwithCMRaspartofthecostproposalforPhaseI($100,000max)andPhaseII($750,000max),under“CMRCompliance”inOtherDirectCosts. Thisisanestimatedtotalcost(ifany)thatwouldbeincurredtocomplywiththeCMRrequirement.OnlyproposalsthatreceiveanawardwillberequiredtodeliverCMRreporting,i.e.iftheproposalisselectedandanawardismade,thecontractwillincludeadeliverableforCMR.

Todate,therehasbeenawiderangeofestimatedcostsforCMR. Whilemostfinalnegotiatedcostshavebeenminimal,thereappearstobesomehighercostestimatesthatcanoftenbeattributedtomisunderstandingtherequirement. TheSTTRprogramdesiresfortheGovernmenttopayafairandreasonableprice. ThistechnicalanalysisisintendedtohelpdeterminethisfairandreasonablepriceforCMRasitappliestoSTTRcontracts.

TheOfficeoftheAssistantSecretaryoftheArmy(ManpowerReserveAffairs)operatesandmaintainsthesecureCMRSystem.TheCMRwebsiteislocatedhere:

TheCMRrequirementconsistsofthefollowing13items,whicharelocatedwithinthecontractdocument,thecontractor'sexistingcostaccountingsystem(i.e.estimateddirectlaborhours,estimateddirectlabordollars),orobtainedfromthecontractingofficerrepresentative:

(1)ContractingOffice,ContractingOfficer,ContractingOfficer'sTechnicalRepresentative;

(2)Contractnumber,includingtaskanddeliveryordernumber;

(3)Beginningandendingdatescoveredbyreportingperiod;

(4)Contractorname,address,phonenumber,e-mailaddress,identityofcontractoremployeeenteringdata;

(5)Estimateddirectlaborhours(includingsub-contractors);

(6)Estimateddirectlabordollarspaidthisreportingperiod(includingsub-contractors);

(7)Totalpayments(includingsub-contractors);

(8)PredominantFederalServiceCode(FSC)reflectingservicesprovidedbycontractor(andseparatepredominantFSCforeachsub-contractorifdifferent);

(9)Estimateddatacollectioncost;

(10)OrganizationaltitleassociatedwiththeUnitIdentificationCode(UIC)fortheArmyRequiringActivity(TheArmyRequiringActivityisresponsibleforprovidingthecontractorwithitsUICforthepurposesofreportingthisinformation);

(11)Locationswherecontractorandsub-contractorsperformthework(specifiedbyzipcodeintheUnitedStatesandnearestcity,country,wheninanoverseaslocation,usingstandardizednomenclatureprovidedonwebsite);

(12)Presenceofdeploymentorcontingencycontractlanguage;and

(13)Numberofcontractorandsub-contractoremployeesdeployedintheaterthisreportingperiod(bycountry).

Thereportingperiodwillbetheperiodofperformancenottoexceed12monthsendingSeptember30ofeachgovernmentfiscalyearandmustbereportedby31Octoberofeachcalendaryear.

AccordingtotherequiredCMRcontractlanguage,thecontractormayuseadirectXMLdatatransfertotheContractorManpowerReportingSystemdatabaseserverorfillinthefieldsontheGovernmentwebsite. TheCMRwebsitealsohasano-costCMRXMLConverterTool.

TheCMRFAQexplainsthatafairandreasonablepriceforCMRshouldnotexceed20hourspercontractor. PleasenotethatthischargeisPERCONTRACTORnotPERCONTRACT,foranoptionalonetimesetupoftheXMLschematouploadthedatatotheserverfromthecontractor'spayrollsystemsautomatically. Thisisnotarequiredtechnicalapproachforcompliancewiththisrequirement,norisitlikelythemosteconomicalforsmallbusinesses. Ifthisisthechosenapproach,theCMRFAQgoesontoexplainthatthisisaONETIMECHARGE,andthereshouldbenodirectchargeforrecurringreporting. ThiswouldexcludechargingforanyfutureGovernmentcontractortochargeagainstthecurrentSTTRcontractiftheonetimesetupofXMLwaspreviouslyfundedinapriorGovernmentcontract.

GiventhesmallsizeofourSTTRcontractsandcompanies,itisouropinionthatthemodificationofcontractorpayrollsystemsforautomaticXMLdatatransferisnotinthebestinterestoftheGovernment. CMRisanannualreportingrequirementthatcanbeachievedthroughmultiplemeanstoincludemanualentry,MSExcelspreadsheetdevelopment,oruseofthefreeGovernmentXMLconvertertool. Theannualreportingshouldtakelessthanafewhoursannuallybyanadministrativelevelemployee. Dependingonlaborrates,wewouldexpectthetotalannualcostforSTTRcompaniestonotexceed$500annually,ortobeincludedinoverheadrates.

ArmySTTR08.ATopicIndex

A08-T001ApplicationofCriticalThinkingtoInterpersonalInteractions

A08-T002TrainingLeaderstoManageEmotionsinanInterpersonalContext

A08-T003TrainingToolstoImprovetheTeachingandCoachingSkillsofMilitaryAdvisors

A08-T004Field/CircuitComputationalModelingandSimulationSoftwareTool

A08-T005TrustworthyExecutionofSecurity-SensitiveCodeonUn-trustedSystems

A08-T006OptimizedHumanPerformance: MitochondrialEnergetics

A08-T007LiquidMetalAnodesforaJP-8FuelCell

A08-T008ImprovedPhysicalSecurityofMilitaryBasesthroughPerimeterTagging

A08-T009ANanotechnology-BasedHydrogenGeneratorforaCompactFuelCellPowerSystem

A08-T010ACompactSolidAcidElectrolyteFuelCellGenerator

A08-T011ActiveTransportExchangeforCompactSustainedPower

A08-T012Electrostaticatomizingfuelinjectorforsmallscaleengines

A08-T013Time–DomainTerahertzEllipsometryforReflection-ModeSensing

A08-T014Micro-burnerBasedFlameIonizationDetectorsforMicro-scaleGasChromatographs

A08-T015BreathableElastomerMembraneLiner

A08-T016DevicesandTextilesforBroad-SpectrumProtection

A08-T017Ultra-Low-NoiseInfraredDetectorAmplifierforNextGenerationStandoffDetector

A08-T018Vision-based3DSimultaneousLocalizationandMapping

A08-T019DevelopmentofaSoldierBattlespaceAuditoryAnalyzerSystem

A08-T020Dilutionrefrigeratortechnologyforscalablequantumcomputing

A08-T021Eye-safeOptically-PumpedGas-filledFiberLasers

A08-T022IonicLiquidMonopropellantBasedGasGenerator

A08-T023In-SituReformingofMiddle-DistillateFuelsThroughCatalyticCrackingofLong-ChainHydrocarbonMolecules

A08-T024AdvancedPointSensor

A08-T025Bi-spectral(VisibleInfrared)MaterialforSmoke/ObscurantMunitions

A08-T026AdvancedAlgorithmsForACombinedChem-BioStandoffSensor

A08-T027SuperHardened,EMIandVibrationImmuneChemicalBiologicalSensor

A08-T028DevelopmentofaFire-Resistant,ThermalBarrierCoatingwithLow-TemperatureFlexibility

A08-T029NanoscaleIn-SolutionTEMSampleStageWithManipulationCapability

A08-T030StraightVegetableOilModificationforCombustion

A08-T031ScalableandDeployableMicrogrids

A08-T032AerosolDecontaminantforUseinPatientCareAreas

A08-T033BioinformaticBasedWearableCriticalCareMonitor

A08-T034RoboticStandoffNeckandSpinalInjuryAssessmentDevice

A08-T035Ante-mortemDiagnosticsforPrionInfection

A08-T036AutomatedMicroscopicMalariaDiagnosis

A08-T037AReal-Time,PortableNon-InvasiveMonitoringSystemofMuscleOxygenandpHinTraumaPatients

A08-T038SurgicalToolsfortheRemovalofSolidTumorswithEnhancedAccuracyattheTumorMargin

A08-T039AReal-Time,Non-InvasiveMonitoringSystemofCombatCasualties

A08-T040ImprovedCompliancewithAntimalarialProphylaxisThroughNovelRoutesofAdministration

A08-T041NovelBiomarkersAssessmentintheProgressionfromAndrogenDependentProstateCancertoAndrogenIndependentProstateCancer

A08-T042AdvancedVehicle/TerrainInteractionModelingtoSupportPowerandEnergyAnalysis

ArmySTTR08.ATopicDescriptions

A08-T001TITLE:ApplicationofCriticalThinkingtoInterpersonalInteractions

TECHNOLOGYAREAS:HumanSystems

OBJECTIVE:Developandassessawebbasedtrainingsystemtotraincriticalthinkingskillsformilitaryinterpersonalsituations.

DESCRIPTION:AsthescopeofmilitaryoperationswidenstoincludeSoldiers’interactionswithpersonnelfromothergovernmentandnon-governmentagencies,civiliansfromothercultures,andcoalitionforces,Solders’interpersonalskillsbecomepivotalinthesuccessofthoseoperations.EvenwithintheArmyitself,effectiveinterpersonalinteractionsformthefoundationagainstwhichsuccessfuloperationsareexecuted.Forexample,Armycommandersmustmotivate,assessinterpersonalsituations,influence,settledisputes,negotiate,communicate,andassessandadjusttheorganizationalclimate.Alloftheserequireeffectiveinterpersonalinteractions.

Interpersonalinteractionsareordinarilyviewedasrequiringintuitiveandsubjectiveskills.However,theeffectivenessofinterpersonalskillswouldbeincreasedbybeingabletodeliberatelyandconsciouslythinkthroughandassessinterpersonalsituations,accuratelyassessone’sownandothersmotivationsandbiases,andmindfullydevelopoptionstopursue.

Criticalthinkingisusedinthemeta-tasksofunderstanding,situationassessment,problemsolvinganddecisionmaking,andevaluating(Fischer,SpikerandRiedel,2004).Allofthesetasksarealsofoundininterpersonalsituationsandsuggeststhattheuseofcriticalthinkinginthesesituationswouldcontributetoincreasedinterpersonaleffectiveness.

InordertoensurethatSoldiershavethebestskillstooperateeffectivelyininterpersonalsituations,theyneedtobeabletoapplycriticalthinkingtothosesituations.TheArmy’seducationalcurriculumcurrentlyincludescoursesincriticalthinkingforArmyofficers(e.g.CommandandGeneralStaffCollegeIntermediateLevelEducationprogram),howeverthoseskillsareappliedtotaskssuchasmissionanalysis,wargaming,andanalyzingcoursesofaction,nottointerpersonalsituations.Explicittrainingapplyingcriticalthinkingtomilitaryinterpersonalsituationsisneeded.

Inordertodeveloptrainingforcriticalthinkingskillsasappliedtointerpersonalskills,therelationshipbetweencriticalthinkingandinterpersonaleffectivenessshouldbeunderstood.Amodeldescribingtherelationshipbetweencriticalthinkingandinterpersonaleffectivenessisneeded.Fordifferenttypesofinterpersonalsituations,themodelwouldspecifywhereintheinteractionprocessesdifferentcriticalthinkingskillscouldbeused.Further,identificationofasetofhighimpactskillsformilitaryinterpersonalsituationsisneeded.Theeducationalandscientificliteraturecontainshundredsofskillsthathavebeenlabeledascriticalthinkingskills(Fischer,etal,2004). Thosethatwouldbemostusefulinmilitaryinterpersonalsettingsshouldbeidentified.

Thetrainingdevelopmentplanshouldincludeidentificationordevelopmentofmeasurementinstrumentstomeasurethosecriticalthinkingskillsbeingtrained.Thesemeasurescanthenbeusedtoprovidefeedbacktotraineesandtoassesstheeffectivenessofthetraining.

PHASEI:Developatheoreticalmodeltodescribetherelationshipbetweencriticalthinkingandeffectiveinterpersonalinteractions.Identifyandvalidatecriticalthinkingskillsapplicableacrossabroadrangeofmilitaryinterpersonalsituations.Fromthisset,selecthighimpactskillsforwhichtodeveloptraining. Developacomprehensivetrainingstrategyforapplyingthesecriticalthinkingskillstomilitaryinterpersonalsituations.

PHASEII:Developandassessawebbasedsystemfortrainingcriticalthinkingasappliedtomilitaryinterpersonalsituations.ThesystemwouldtrainthehighimpactcriticalthinkingskillsidentifiedinPhaseI.Thetrainingwouldbeadaptableforselfdevelopment,onlinecourses,orschoolhousecurricula.Itwouldincorporateinnovativetechniquestotraincriticalthinkingskillsforapplicationininterpersonalenvironmentswithinawebbasedtrainingplatform.

PHASEIII: Themodelwouldbeusefultobasicresearchscientistsinthatitwouldarticulatetherelationshipbetweencriticalthinkingandinterpersonalskills.Currentliteraturemaintainsthatcriticalthinkingskillsareneededininterpersonalsituationsbutdoesnotdescribehoworwheretheyshouldbeused. Criticalthinkingtrainingisandhasbeenofgreatinteresttocivilianandcorporateeducatorsandtrainers,buttheapplicationhasbeentotasksnotinterpersonalrelationships.Theproposedworkcouldextendcriticalthinkingtrainingtointerpersonalapplicationsinthesetrainingciviliansettings.

REFERENCES:

1.Fischer,S.C.,Spiker,V.A.,RiedelS.L.(2004). CriticalThinkingTrainingforArmy Officers.VolumeTwo:AModelofCriticalthinking.AnacapaSciences,Inc.

2.Murensky,C.L.(2000).Therelationshipsbetweenemotionalintelligence,personality,criticalthinkingability,andorganizationalperformanceatupperlevelsofmanagement.DissertationAbstractsInternational,61,1121.

KEYWORDS:CriticalThinkingSkills,InterpersonalSkills,webbasedtraining,CriticalThinkingTraining

A08-T002TITLE:TrainingLeaderstoManageEmotionsinanInterpersonalContext

TECHNOLOGYAREAS:HumanSystems

OBJECTIVE: Developaconceptualmodelofemotionmanagementtoguidethedevelopmentofacomputer-basedtrainingtooltoimproveleader’sabilitytoaccuratelyperceiveandcontrolemotionsinselfandothersinaninterpersonalcontext

DESCRIPTION: Strong,competentleadersdefinetheU.S.Armyoftodayandtomorrow.TheArmyleaderinspires,influences,andmotivatesothers(superiors,peers,andsubordinates)bothinternalandexternaltotheArmytoaccomplishorganizationalgoals(FM6-22,pp.1-1).Leadersinspireandmotivatethroughinterpersonalcommunicationwhichconsistsofverbalandnonverbalexchanges.Examplesofinterpersonalcontextsinwhichleadersoftenengageincludefacilitatinggroupproblemsolvingactivities,deliveringperformancefeedback(positiveandnegative),andelicitinginformationfromothers.Theeffectivenessoftheleader’sexchangeisdependentuponhis/herinterpersonalskill,particularlytheirtact.

Aleader’slevelofinterpersonaltactisastrongpredictorofeffectiveinfluenceattempts.TheArmydefinesinterpersonaltactasknowingandacceptingwhatothersperceive,howtheyreact,andthemotivesandvaluesthatmotivatethem(FM6-22,pp.6-3).Interpersonaltactisacombinationofthreeleaderprocesses:self-control(remainincontrolofthoughtsandactions),balance(displayappropriateexpressionsandreadothers’expressions),andstability(sustainappropriateexpressionacrosscontexts).Theeffectivenessofaleaderengagingwithothersisdependentuponhis/herlevelofinterpersonaltact,wherehigherlevelswillincreasetheeffectivenessofleaderexchangebehaviors.

Underliningtheseleaderprocessesaretheemotionsexperiencedbytheleaderandothersinvolvedintheinteraction.Self-controlisasapparentinaleaderwhocontrolsexpressionofpositiveand/ornegativeemotionsacrossallcontexts.Balancereferstotheleaderexpressingthecorrectemotionforaparticularsituation(e.g.,expressingempathytowardsaninjuredsubordinate)andaccuratelyassessingothers’emotionalstate.Stabilitydescribestheleader’sabilitytomaintaincontrolofone’semotionsforextendedperiodsandacrossdifferentcontextualdemands.Together,theseemotionalprocessesdefinealeader’slevelofinterpersonaltact,andsubsequentlyimpacttheleader’sabilitytoeffectivelyperforminaninterpersonalcontext.

Alargebodyofresearchhasexploredtheroleofemotionsininterpersonalexchanges.Emotionscanimpacttheleader’sinfluenceonteamprocessesincludingpromotinghealthyconstructivecontroversy(Fitness,2000),creativeproblemsolving(Bar-On,Handley,Fund,2006;IsenLabroo,2003),andhigherperformance(JordanAshkanasy,2006;Wolfetal.,2006).Leader’suseofinappropriateemotionscannegativelyimpactsubordinateperceptionsoftheleader(NewcombeAshkanasy,2002)andacceptanceoffeedback(Gaddis,Mumford,Connelly,2004).Morerecently,MajorAbrahamsinvestigatedtheroleofleaderemotionsinanArmycontextwithasurveyof271U.S.ArmyCommandandGeneralStaffCollegestudents.Resultsevidencedastrongrelationshipbetweenemotionalintelligenceandcommandclimate,wherehigheremotionalintelligenceresultedinmorereportsofleaderscreatingeffectiveandpositivecommandclimates(Abrahams,2007).Takentogether,thesefindingsmakeitclearthatemotionsimpactleaders’abilitytoengageineffectiveinterpersonalexchanges.

Themanagementofemotionshasalsobeenthesubjectofrecentempiricalresearch.Currently,managementresearchispredominantlyfocusedontwoemotiontheories:emotionalintelligenceandemotionalregulation.Emotionalintelligence(EI)consistsoffourdistinctprocessesthatuniquelycontributetoone’slevelofEI.Thefourprocessesarea)theaccurateperceptionandexpressionofemotions,b)assimilationorthegenerationofemotionstoassistinproblemsolving,c)theacquisitionofemotionalknowledgetostimulategrowth/development,andd)theregulationofemotionsinselfandothers(MayerSalovey,1997).ThisEImodelprescribesatwosteptrainingprocess.First,individualsassesstheirEIabilitywiththeMayer-Salovey-CarusoEmotionalIntelligenceTest(MSCEIT),whichisamulti-itempaper-penciltest.Second,feedbackisconstructedbasedonone’sMSCEITscoreanddeliveredbyaprofessionalwithrecommendedtraining.However,thetraininghasreceivedlimitedempiricalsupportandsamplestypicallysufferfromrangerestriction.Additionally,thetrainingprocessistimeandresourceintensive.

Emotionregulationisthesecondapproachthathasrecentlygainedmomentumintheemotionmanagementliterature.AccordingtoGross(2007),emotionregulationentailsasetofprocessesemployedtoregulateintrinsic(i.e.,withinself)andextrinsic(i.e.,withinothers)emotionswiththegoaltomanagephysiologicalcommitmentsofemotionalarousal(e.g.,reducingstresslevelsinkeysituations)andemotion-relatedbehavior(e.g.,preventingmaladaptivebehaviorinsocialcontexts)(Eisenburg,1998;WaldenSmith,1997).Thisapproachhastwocoreaspects.First,regulationcanincludebothnegativeandpositiveemotions.Second,regulatoryprocessescanbebothconsciousandunconscious.Currentregulationapproachesincludebothcognitive(e.g.,reframingthesituation)andbehavioral(e.g.,deep,deliberatebreathing)methods. Themethodshaveshownvariousdegreesofeffectiveness.However,theliteratureissparseonempiricalresearchlookingattheimpactofcontextandstimulusontheeffectivenessofaparticularapproach.Further,someresearcherscontendthatthatnotallapproachesarenecessarilyadaptive,whichsuggeststheimportanceofconsideringbothshort-termandlong-termeffectspriortoengaginginaregulatoryprocess.

Thecurrentemotionmanagementliteraturedoesnotclarifywhichapproachisbestformanagingemotions. First,eachmodeldescribesdifferentprocessesthatanindividualusestomanageemotions.However,thedifferentprocessesappeartohavesomeoverlapwithoneanother,whichsuggestsanoverarchingmodelmayexist.Second,theliteraturedoesnotprovidestrongempiricalevidenceregardingtheeffectivenessofaparticularapproachunderdifferentcontextsandstimulus.Third,itisunclearwhatimpacttheinstructionalformat(i.e.,thepresentation/organizationalofinformationandmediumtodeliverymaterial)hasonlearning. Takentogether,theemotionmanagementfieldwouldbenefitfromanoverarchingmodelthatwouldguideempiricalresearchandinstructionaldevelopment.

Thistopicistosolicitthedevelopmentofaconceptualmodelofemotionmanagement.Themodelwilldrivethecreationofamulti-facetedemotionmanagementtrainingtooltotrainArmyleadersonemotionalskillsneededinordertorecognizeandcontrolselfandothers’emotionsinaninterpersonalcontext.Developmentoftheconceptualmodelwillbeguidedbyexistingliterature,whichwillprovidethetheoreticalfoundationofthetrainingcurriculumandmedium.ThistrainingpackagewillprovideArmyleaderswiththenecessaryknowledgeandskillstobeabletoeffectivelymanageemotionsofallparticipantsduringaninterpersonalexchange.Alltrainingsoftware/systemsmustbeADL/SCORMcompliant.

PHASEI:TheobjectiveofPhaseIistodeveloptheconceptualmodelofemotionmanagement.Thecontractorshoulddeterminethekeyprocessesincludingknowledgeandskillsforemotionmanagementasitrelatestoaninterpersonalcontext.Developmentofthemodelshouldbederivedfromexistingtheoretical-basedandempirical-basedliterature.Inaddition,thecontractorwillidentifycurrenttrainingprogramsincludingorganizationofinformationandpresentationmedium.

PHASEII:Developandvalidateaninteractive,computer-basedtrainingtooltoincreaseleaders’emotionmanagementskillsinaninterpersonalcontext.Trainingshouldincludeinterpersonalexchangescenariosinwhichleaderslearnanddevelopemotionmanagementskillswhileinteractingwithsubordinates,peers,andsuperiors.TrainingmustcomplywithSharableContentObjectReferenceModel(SCORM)standards.

PHASEIII:ModificationstotheleaderemotionmanagementmodulewouldresultinatrainingsystemapplicabletoleaderinterpersonalcontextsoutsidetheU.S.Army(e.g.,jointagencyendeavors).Thistrainingcouldbemarketedinavarietyofmilitaryandciviliancontextsinwhichindividualsmustroutinelyengageininterpersonalcontextsinanefforttoachieveorganizationalgoals.ThistrainingcouldserveasacomplementtocurrentleaderknowledgeandskilltrainingtaughtatU.S.ArmyCommandandGeneralStaffCollegeandothermilitaryeducationinstitutions.

REFERENCES:

1.Abrahams,D.S.(2007).Emotionalintelligenceandarmyleadership:Giveittomestraight!MilitaryReview,2,86-93.

2.Bar-On,R.,Handley,R.,Fund,S.(2006).Theimpactofemotionalintelligenceonperformance.InV.U.Druskat,F.Sala,G.Mount(Eds.),Linkingemotionalintelligenceandperformanceatwork:Currentresearchevidencewithindividualsandgroups(pp.3-21).Mahwah,NJ:LawrenceErlbaumAssociates.

3.DepartmentofArmy,Headquarters(2006).FieldManual6-22:Armyleadership.Washington,D.C.

4.Eisenberg,N.(1998).Introduction.InN.Eisenberg(Ed.),Social,emotional,andpersonalitydevelopment(pp.1-24).NewYorkCity,NY:WileyPress.

5.Fitness,J.(2000).Angerintheworkplace:Anemotionscriptapproachtoangerepisodesbetweenworkersandtheirsuperiors,co-workers,andsubordinates.JournalofOrganizationalBehavior,21,147-162.

6.Gaddis,B.,Connelly,S.,Mumford,M.(2004).Failurefeedbackasanaffectiveevent:Influencesofleaderaffectonsubordinateattitudesandperformance.LeadershipQuarterly,15(5),663-686.

7.Gross,J.J.(2007).Emotionregulation:Conceptualfoundations.InJ.J.Gross(Ed.),HandbookofEmotionRegulation(pp.3-26).NewYorkCity,NY:GuilfordPress.

8.Isen,A.M.Labroo,A.A.(2003).SomeWaysinWhichPositiveAffectFacilitatesDecisionMakingandJudgment.InS.SchneiderJ.Shanteau(Eds.),EmergingPerspectivesonJudgmentandDecisionResearch(pp.365-393).NewYorkCity:NY,CambridgePress.

9.Jordan,P.,Ashkanasy,N.(2006).Emotionalintelligence,emotionalself-awareness,andteameffectiveness.InV.U.Druskat,F.Sala,G.Mount(Eds.),Linkingemotionalintelligenceandperformanceatwork:Currentresearchevidencewithindividualsandgroups(pp.145-164).Mahwah,NJ:LawrenceErlbaumAssociates.

10.Mayer,J.D.,Salovey,P.(1997).Whatisemotionalintelligence?InP.SaloveyD.J.Sluyter(Eds.)EmotionalDevelopmentandEmotionalIntelligence(pp.3-31).NewYork:BasicBooks.

11.Newcombe,M.J.,Ashkanasy,N.M.(2002).Theroleofaffectandaffectivecongruenceinperceptionsofleaders:Anexperimentalstudy.LeadershipQuarterly,13(5),601-614.

12.Walden,T.A.,Smith,M.C.(1997).Emotionregulation.Motivation,21,7-25.

13.Wolf,S.B.,Druskat,V.U.,Koman,E.S.,Messer,T.E.(2006).Thelinkbetweengroupemotionalcompetenceandgroupeffectiveness.InV.U.Druskat,F.Sala,G.Mount(Eds.),Linkingemotionalintelligenceandperformanceatwork:Currentresearchevidencewithindividualsandgroups(pp.223-242).Mahwah,NJ:LawrenceErlbaumAssociates.

KEYWORDS:emotionalprocesses,emotionregulation,leaderinfluence,interpersonalexchanges

A08-T003TITLE:TrainingToolstoImprovetheTeachingandCoachingSkillsofMilitaryAdvisors

TECHNOLOGYAREAS:HumanSystems

OBJECTIVE:Developandevaluateaninnovativetrainingsystemforimprovingmilitaryadvisors’abilitytoteachandcoachtheirhostnationcounterpartsfromadifferentcountry. Thetrainingmustbegroundedinatheoreticalframeworkthatidentifiesthecross-culturalvariablesthatimpacttheeffectivenessofdifferentadvisorinstructionalapproaches,aswellastheculturalvariablesthatinfluencehostnationcounterpartlearningstrategiesandmotivation.

DESCRIPTION:Recently,conventionalSoldiershavehadtoassumetheunconventionalroleofadvisorandtrainertoIraqiandAfghansecurityforces. Accordingtothe2006QuadrennialDefenseReviewandsupportingdocuments,militaryadvisorteamsandtransitionteamswillplayalargerroleinallfuturemilitaryoperations. Toaidthedevelopmentofthesenewadvisorroles,theJointCenterforInternationalSecurityForceAssistance(JCISFA)wasestablishedin2006toinstitutionalizebestpracticesrelatedtosecurityforceassistancemissions.JCISFArequestedtheArmyResearchInstitutefortheBehavioralandSocialSciences’(ARI)assistanceinexploringnewandinnovativemethodsfortrainingmilitaryadvisorssothattheycanmoreeffectivelyteachandcoachtheircross-culturalcounterpartsandunits.

Militarydoctrinecurrentlyprovidesguidanceonvariousmethodstotrainhost-nationsecurityforces. Advisorsassisttheircounterpartsthroughformalschooling,mobiletrainingteams,andpartnershipteamsalongwithadvisorteams(FM3-24,2007). Despitetheimportanceoftheadvisorteammission,thecurrentstateoftheartintrainingadvisorsprimarilyconsistsofclassroomlecturesusingPowerPointandlimitedopportunitiesforface-to-faceroleplayingexercises. Whilethistrainingishelpfultoadvisors,itisinsufficientforfullypreparingmilitaryadvisorsfortheiradvisingmission,primarilybecausethewaysinwhichWesternersteachindividualsfromaWesternculturemayormaynotbesuitedtothewaysinwhichWesternersshouldteachtheircounterpartsfromtheMiddleEast. Agrowingbodyofliteratureoncultureandcross-culturalinteractionsstronglysuggeststhatsubstantiveculturaldifferencesexistwithrespecttohowindividualsfromdifferentcountriesinterpretandinteractwiththeirenvironment. Thus,toapplyWesterninstructionalapproachesintheadvisementandtrainingofhostnationcounterpartsmaybemisinformedorill-advised. Forexample,theCulturalLensModelsuggeststhatindividualsfromdifferentculturesarecognitivelydifferent,andthesecognitivedifferenceshaveimplicationsfortraining(Klein,2004). Asanotherexample,Gelfand,Erez,andAycan(2007)notedthattherearedifferencesamongcultureswithrespecttoexpectationsofhowfeedbackshouldbedeliveredandhowdifferenttypesoffeedbackarereceived. Thissuggeststhat,tobeeffective,advisorsmustbetrainedinhowtobestdeliverfeedbacktotheircounterpartsaccordingtothecounterparts’culturalnorms,notaccordingtoUSstandards. Gelfandetal.(2007)alsonotedthatdifferentculturesdifferwithrespecttowhatisviewedasrewarding,suggestingthat,inordertomaintainsufficientmotivationlevelsoftheircounterparts,advisorsneedtobeabletoascertainwhatincentivesareviewedasvaluableintheirhostnation’sculture.

Inboththemilitaryandtheprivatesector,littlefocushasbeenplacedontheinstructionalandlearningdifferencesthatinfluencehowonecanbesttrainanindividualfromanotherculture.Toaddressthisproblem,theU.S.schoolsystemisbeginningtomakechangesregardingcross-culturalinstruction.Notably,certainstateshavebeguntorequireteachercertificationsandcourseworkinmulticulturaleducationinordertoimprovetheinstructionofinterculturalstudents(Cushner,K.1994;Morrier,Irving,Dandy,Dmitriyev,Ukeje,2007). Themilitarymustbegintoadoptthisperspective,aswellandtraintheU.S.trainers(i.e.,advisors)onhowtomosteffectivelytraintheircounterparts.

BeforeU.S.advisortrainingcanbedeveloped,however,across-culturaltheoreticalmodelmustbedevelopedthatexplicatestheindividualadvisordifferences,theindividualcounterpartdifferences,thesituationalfactors,andculturalfactorsthatimpactbothhowadvisorsshouldteach/coachcounterpartsandthelearningstrategiesandmotivationlevelsofcounterparts. ParticularfocusshouldbeonMiddleEasterncultures,drawingfromreportscomingoutofIraqandAfghanistan,aswellasthegrowingbodyofempiricalfindingsinthecross-culturalandmultinationalliteratures.Becausesuchamodeldoesnotcurrentlyexist,thedevelopmentofthismodelwouldadvancescientificandmilitaryunderstandingofcross-culturalfactorsintrainingandadvising,andtheapplicationofthisknowledgetotrainingwouldrepresentcuttingedgeworkinmultinationaltraining.

TheobjectiveoftheadvisortrainingistoprovideU.S.advisorswitheffectiveinstructionalstrategiestousewithindividualsfromanotherculture,specificallythosefromtheMiddleEast.Attentionmustbepaidtolanguagedifferencesandcommunicationdifficultieswithinthissetting.Althoughpioneeringtrainingsolutionsareencouraged,thetrainingapproachshouldconformtoDepartmentofDefenseandArmystandardsfortraining.

PHASEI:Developatheoreticalmodelthatidentifiestheindividualadvisordifferences,theindividualcounterpartdifferences,thesituationalfactors,andculturalfactorsthatimpactbothhowadvisorsshouldteach/coachcounterpartsandthelearningstrategiesandmotivationlevelsofcounterparts.Thetheoreticalmodelshouldleadtotheidentificationofbestpracticesforinstruction;torelatethosepracticestolearningtheory;todevelopamodelthataccountsforthesuccessorfailureofcoachingstrategies;andtodescribelearningstyledifferencesinaspecificMiddleEasternculture.Recommendationsshouldalsobemadeforovercominglanguageandcommunicationdifficulties.

PHASEII:Offerorswilldevelopandvalidateaninnovativetrainingprogramtoimprovetheteachingandcoachingskillsofmilitaryadvisors,takingintoaccountcross-culturaldifferencesininstructionalmethods,learningstylesandcommunicationdifficulties.Thistopicencouragesstate-of-the-scienceapproachestotraining. However,trainingproductsshouldconformtotherelevantArmyregulationsandDepartmentofDefenseguidancethatguidetheparticulartrainingapproachproposed(e.g.,TRADOCregulation350-70,SharableContentObjectReferenceModel/SCORMcompliance,Section508compliance).

PHASEIIIDUALUSEAPPLICATIONS:Thistrainingcouldbemarketedandusedinavarietyofmilitaryandcivilianapplicationsinwhichindividualsarerequiredtointeractandtraincross-culturalgroups.Thetheoreticalmodelandpracticesderivedfromthetheoreticalmodelwouldbehighlyusefulandmarketabletoorganizationswhoengageinmultinationaltrainingandglobalbusinessendeavors.

REFERENCES:

1.AdvancedDistributedLearning:SCORM.

2.Cushner,K.(1994).Preparingteachersforaninterculturalcontext.InR.W.BrislinT.Yoshida(Eds.),Improvinginterculturalinteractions:Modulesforcross-culturaltrainingprograms.Multiculturalaspectsofcounseling.Series3(pp.109-128).ThousandOaks,CA:SagePublications.

3.DepartmentoftheArmy.(2006).Counterinsurgency(FieldManual3-24).Washington,DC:Author.

4.DepartmentoftheArmy.(1999).TRADOCregulation350-70. Washington,

DC:Author.

5.Gelfand,M.J.,Erez,M.,Aycan,Z.(2007). Cross-culturalorganizationalbehavior. AnnualReviewofPsychology,58,479-514.

6.Klein,H.A.(2004). Cognitioninnaturalsettings:Theculturallensmodel.InMichaelKaplan(Ed.)Culturalergonomics(pp.249-280). Amsterdam,Netherlands:ElsevierSciencePublishers.

7.Morrier,M.J.,Irving,M.A.,Dandy,E.,Dmitriyev,G.Ukeje,I.C.(2007).Teachingandlearningwithinandacrosscultures:EducatorrequirementsacrosstheUnitedStates.MulticulturalEducation,Spring,32-40.

8.Section508website.

KEYWORDS:teaching,instructionalmethods,cross-cultural,cross-culturalcommunication,multinational,culture

A08-T004TITLE:Field/CircuitComputationalModelingandSimulationSoftwareTool

TECHNOLOGYAREAS:InformationSystems

OBJECTIVE:Developanddemonstrateafield/circuitcomputationalsoftwaretoolcapableofmodelingcompletecommunicationssystemsincludingactivedevices,passivedevices,andantennas.

DESCRIPTION:Thetrendtowardincreasinglevelsofintegrationandminiaturizationinmodernmilitarycommunicationsdeviceshasforcedtheco-designofantennasandotherelectromagneticelementswiththebasebandanddrivecircuitryinordertoachievefirst-passdesignsuccess.Thecircuitrycanincludeactiveandpassivedeviceswithnonlinearandtime-varyingcharacteristics.Theantennasandotherelectromagneticelementstypicallyareembeddedincomplexstructuresandinteractwiththesystempackagingandotherelectroniccomponents.Currentcommercialmodelingandsimulationsoftwaretoolscannothandlethislevelofcomplexity,althoughoverthepasttenyearsanumberofcommercialandacademicresearchprogramshavemadesignificantprogresstowardsthisgoal[1-7].Conventionaltime-domaintechniquessuchasthefinite-differencetime-domainmethodshowdegradedspatialconvergenceinthepresenceofcomplexgeometriesduetomeshingrequirements,andthepresenceofnonlinearcomponentsfurtherdegradesperformancebyintroducingadditionaltimeinstability.Frequency-domaintechniquessuchasthefinite-elementmethodgenerallysufferevengreaterdifficultyhandlingnonlinearcomponents,despitehavingbetterspatialconvergence.

Thistopicrequeststhedevelopmentanddemonstrationofafield/circuitcomputationalsoftwaretoolcapableofmodelingcompletecommunicationssystemsincludingactivedevices,passivedevices,andantennas.Thistoolwillbecapableofsimultaneoushigh-fidelitytimedomainmodelingoftheperformanceofradiotransceiversatthecircuitlevelincludingcomponentswithnonlinearanddynamiccharacteristics,andatthesystemlevelincludingtime-varyingantennaradiationpatterns.Theabilitytomodeltheeffectofexternalelectromagneticfieldsontheinternaloperationofradiocircuitrywilldeepenunderstandingofthecausesofco-siteinterferenceandleadtonewmitigationstrategies,whichinturnwillimprovetheperformanceofindividualcommunications,sensor,andEWsystemsoperatinginacommonenvironment.

Pleasenotethatthistopicexplicitlydoesnotsolicitdevelopmentofequivalentcircuitmodelsforsimulationofelectromagneticfieldeffects,butratherthecombinationofseparatetoolsforcircuitmodelingandelectromagneticfieldsimulationintoasinglesimulationenvironment.Alsonotethatthistopicexplicitlywillnotsupportdevelopmentofagraphicaluserinterfaceforproblemsetupanddatadisplay,andsothecomputationalenginesshouldbecompatiblewithavailableopensourceGUIsoftware[8].Theresultingsoftwaremodelingandsimulationtoolmustbeverifiedandvalidatedbycomparisonwithresultsfromanalyticalandothernumericaltechniques,andbycomparisonwithdatafromasetofwell-chosenexperiments.

PHASEI:Develop,oridentifyandselect,appropriatesoftwarecomponentsforcircuitmodelingandelectromagneticfieldsimulation.Formulateaschemetocombinethecomponentsinordertoperformthetopictask.Demonstratefeasibilitybygeneratingsimulationresultsonasimplecircuit/antennacombination.DevelopanddeliveraconstructiveworkplanforthedevelopmentofacompleteprototypecommercialpackageinPhaseII.

PHASEII:Developanddemonstrateacompletecommercialprototypeofthefield/circuitcomputationalsoftwaretoolbasedonPhaseIresults.Verifyandvalidatetheprototypetoolbycomparisonwithresultsfromanalyticalandothernumericaltechniques,andbycomparisonwithdatafromasetofwell-chosenexperiments.

PHASEIIIDUALUSEAPPLICATIONS:ThetechnologydevelopedunderthistopicwillenablesignificantreductioninthedesigncycletimeofMobileWirelessCommunicationssystems(asdefinedintheArmyScienceandTechnologyMasterPlan)byenablingaccuratepredictionofradiosystemperformanceincludingantennaeffects,andwillbringsimilarbenefittosystemdevelopmentforapplicationsincommercialwirelessnetworkingandcommunications.

REFERENCES:

1.K.Fujimori,N.Kawashima,M.Sanagi,andS.Nogi,AnefficientLE-FDTDmethodfortheanalysisoftheactiveintegratedcircuitandantennamountednon-lineardevices,IEICETransactionsonElectronics,v.E90C,n.9,p.1776-1783,September2007

2.M.Sasaki,Designofamillimeter-waveCMOSradiationoscillatorwithanabove-chippatchantenna,IEEETransactionsonCircuitsAndSystemsII-ExpressBriefs,v.53,n.10,p.1128-1132,October2006

3.A.E.Yilmaz,J.M.Jin,andE.Michielssen,ParallelFFTacceleratedtransientfield-circuitsimulator,IEEETransactionsonMicrowaveTheoryandTechniques,v.53,n.9,p.2851-2865,September2005

4.H.WuandA.C.Cangellaris,Model-orderreductionoffinite-elementapproximationsofpassiveelectromagneticdevicesincludinglumpedelectrical-circuitmodels,IEEETransactionsonMicrowaveTheoryandTechniques,v.52,n.9,p.2305-2313,September2004

5.M.B.Steer,Multiphysicsmultiscalemodelingofmicrowavecircuitsandsystemshybridizingcircuit,electromagneticandthermalmodeling,15thInternationalConferenceonMicrowaves,RadarandWirelessCommunications,MIKON-2004,v.3,p.1097-1105,May2004

6.XueMinXuandQingHuoLiu,Fastelectromagneticmodelingforelectronicpackaginginlayeredmedia,ElectricalPerformanceofElectronicPackaging2001,p.181-184,October2001

7.J.W.Schuster,R.J.Luebbers,andT.G.Livernois,ApplicationoftherecursiveconvolutiontechniquetomodelinglumpedcircuitelementsinFDTDsimulations,IEEEAntennasandPropagationSocietyInternationalSymposium,1998.v.4.p.1792-1795,June1998

8.SeeforexampleGiD(

KEYWORDS:Computationalelectromagnetics,circuitsimulation,multi-physicsmodelingandsimulation

A08-T005TITLE:TrustworthyExecutionofSecurity-SensitiveCodeonUn-trustedSystems

TECHNOLOGYAREAS:InformationSystems

OBJECTIVE:TheobjectiveofthisSTTRistoresearchanddevelopamechanismfortrustworthyexecutionofsecurity-sensitivesoftwareonun-trustedsystemsthatmaybecompromisedbymaliciouscode(malware).

DESCRIPTION:Computingsystemsareroutinelytargetedbyawidevarietyofmalwares,suchasspyware,trojans,rootkits,andviruses.Thepresenceofexploitablevulnerabilitiesandtheavailabilityoftoolsforconstructingexploitcodehasreducedtheamountofeffortrequiredforattackerstointroducemalwareintocomputingsystems.Moreover,themonetaryincentivemotivatesattackerstoadoptincreasinglysophisticatedattackmethods.Theproblemofintrusionbymalwareisfurthercompoundedbyeverincreasingnetworkconnectivity,whichenablesattackstobelaunchedremotelyandfacilitatestheswiftattackpropagationtovulnerablecomputingsystems.Quiteoftenusersmaybeunawarethattheircomputingsystemshavebeencompromisedandcontinuetouseawidevarietyofsecurity-sensitiveapplications.Thisleadstoeverincreasingcasesofcorporatedataleakage,privateorpersonalinformationtheft,fraudandfinanciallosses.Thereisacriticalrequirementtodevelopasafeexecutionguaranteeforsecurity-sensitivesoftwareonun-trustedsystems.ThegoalofthisSTTRistodevelopnewanddeployableassurancetechnologiesthatcanachievethefollowings:

1)Assuredexecutionofsecurity-sensitivesoftware:

Newmechanismsmustbedevelopedtoisolatetheexecutionofsecurity-sensitivesoftwarefromallmalwaresthatmaybepresentonanun-trustedsystem.Thisisolationmustbeachievedwithoutrelyingonpotentiallyvulnerablemechanisms,suchasoperatingsystembasedprotections.

2)Simpleandtransparentdeployment:

Thesoftwareisolationmechanismsmustbeeasilydeployableonawiderangeofcomputingplatforms,withnorequirementonhardwaremodification.

3)Trustedverification:

Theremustbeasimpleandtrustedwayfortheusertodetermineandverifythatthesecurity-sensitivesoftwarehasbeenexecutedsafely.

PHASEI:a.Identifyanddevelopthetechniquesrequiredtoachieveisolatedcodeexecutiononun-trustedsystems;

b.Demonstratetheideasbyimplementingaprototypesystemonaspecificorasmallsubsetofcomputingplatforms.

PHASEII:a.Extendtheprototypeimplementationonmajorcomputingsystems.

b.Designanddevelopsimpleandtrustworthyusernotificationmechanismstoindicatethesafeexecutionofsecuritysensitivesoftware

PHASEIII:(Dualuseproductdevelopment)

Un-tamperedexecutionofsecurity-sensitivesoftwareonageneralcomputingplatformisimportantforbothmilitaryandcommercialapplication.Thedevelopedtechnologymustbeconvertedintoaproductthatcanbeusedonbothmilitaryandciviliancomputersystems.Forexample,thesolutiondevelopedunderthisSTTRwillallowtrustedonlinebankingwithoutworryingthattheaccountinformationincludingusernameandpasswordwillbestolenbypotentialmaliciouscodepresentonthehostcomputer.Thesafeexecutioncapabilitywillalsoprovideahighlevelofassurancetomanysecurity-sensitiveDoDapplications.

KEYWORDS:Safesoftwareexecution,softwareisolation,trustedcomputingplatforms,defenseagainstmaliciouscode

A08-T006TITLE:OptimizedHumanPerformance: MitochondrialEnergetics

TECHNOLOGYAREAS:HumanSystems

OBJECTIVE:Developmetabolicsupplementstooptimizeadenosinetriphosphateproductionineukaryotes.

DESCRIPTION:ThemodernArmyisconstrainedbybiology. HighlyqualifiedandveryexperiencedsoldiersroutinelyleavetheArmybecausetheyareold;theirphysicaland/orcognitiveperformancecapabilitiesaresignificantlylessthanthatofa20yearold. Thebiologicalbasisofthisreductioninperformancecapabilitymaybeaninjury,butinmostcasesissimplyduetothereducedefficiencyofoldmitochondria,resultinginreducedlevelsofenergy(adenosinetriphosphate)providedtothebodytopowercognitiveandphysicaltasks. Theabilitytostimulatemitochondrialenergyproductionwouldextendthetimethatsoldiersremainfitforduty,boostsoldierphysicalandperformancecapabilities,andexpandtheagerangeofsuitablerecruits. Itwouldalsoeliminatethecurrentdichotomyoftheidealsoldierbeingoptimizedbothforyouth(highperformancecapabilities)andexperience.

Thepasttwentyyearshaveseenarevolutionarybreakthroughinunderstandinghowmitochondriafunction. Humanmitochondriaareanetworkofapproximately2,000proteins,exquisitelyintegratedintoalargernetworkofapproximately100,000cellularproteins,andagainfunctionallyintegratedintoalargernetworkof3billioncells. Allofthecorrespondinggeneshavebeenclonedandsequenced. Thebiochemicalbasisofoxidativephosphorylationiswellunderstoodandgeneticpolymorphismsleadingtoalteredenergeticsandperformancecapabilitiesarewelldocumented. Thescientificunderstandingandthetechnologytoundertakehighthroughputscreeningtoidentifycompoundsthataffectmitochondriaisnowpossible.

PHASEI:Design,construct,anddemonstrateproofofconceptfunctionforahighthroughputassaytoscreenforcompoundsthatincreasemitochondrialcopynumberand/ortheefficiencyofmitochondrialoxidativephosphorylation. IdentifylibrariesofcompoundsthatwillbetestedinphaseII. Establishamethodologyforfollow-upcharacterizationofactivecompounds.

PHASEII: Screenlibrariesofcompoundsforstimulatoryeffectsonmitochondrialcopynumberandmitochondrialoxidativephosphorylation. Characterizeactivecompoundsusinggenetics,genomics,bioinformatics,andbiochemicalapproaches.

PHASEIIIDUALUSECOMMERCIALIZATION: Theworldcontainsapproximately4.2billionpeopleovertheageoftwenty. Evenasmallenhancementofcognitivecapacityintheseindividualswouldprobablyhaveanimpactontheworldeconomyrivalingthatoftheinternet. Thecommercialmarketforacompoundthatcouldreversetheeffectsofagingonhumanenergeticswouldbemorethansignificant. ThecostofSocialSecurityintheU.S.isexpectedtoapproach7%ofthegrossdomesticproduct(GDP);reducingthiscostbyanysignificantdegreewouldalsohavesubstantialimpactonfederalobligationsandexpenditures.

REFERENCES:

1.Balaban,R.S.Nemoto,S.,andFinkel,T. 2005. Mitochondria,oxidants,andaging. Cell120(4):483-95.

2.Beal,M.F. 2005. Mitochondriatakecenterstageinagingandneurodegeneration. AnnNeurol 58(4):495-505.

3.Huang,H.andManton,K.G. 2004. Theroleofoxidativedamageinmitochondriaduringaging. FrontBiosci9:1100-17.

4.Lee,H.C.andWei,Y.H. 1997. Roleofmitochondriainhumanaging. JBiomedSci4(6):319-26.

5.Lenaz,G.,Bovina,C.,D’Aurelio,M.,Fato,R.,Formiggini,G.,Genova,M.L.,Giuliano,G.,Merlopich,M.,Paolucci,U.,Castelli,G.,andVenturaB. 2002. Roleofmitochondriainoxidativestressandaging. AnnNYAcadSci959:199-213.

6.Linford,N.J.,Schriner,S.E.,andRobinovitch,P.S. 2006. Oxidativedamageandaging: spotlightonmitochondria. CancerRes1:66(5):2497-9.

7.Navarro,A.,andBoveris,A. 2004. Ratbrainandlivermitochondriadevelopoxidativestressandloseenzymaticactivitiesonaging. AmJ.PhysiolRegulIntegrCompPhysiol287(5):1244-9.

KEYWORDS:mitochondria,oxidativephosphorylation

A08-T007TITLE:LiquidMetalAnodesforaJP-8FuelCell

TECHNOLOGYAREAS:Ground/SeaVehicles,Materials/Processes

OBJECTIVE: Develop,characterize,evaluate,andoptimizea500WliquidmetalanodefuelcellgeneratorutilizingelectrochemicaloxidationofJP-8fuel.

DESCRIPTION: TheArmyhasneedforcompactelectricalgeneratorsinthe200-500Wlevelforuseassquad-levelbatterychargers.Theenergyrequirementsforbatterychargingwillrequireapowersupplyfedwithanenergy-denseliquidhydrocarbonfuel.Presently,methanolistheliquidfuelofchoiceforfuelcellpowersystemsinthispowerrange,butitwillneedtobepackagedandanewlogisticsupplychainsetinplace. Incontrast,JP-8isahigh-energydensityliquidfuelavailabletothesoldier,butitselectrochemicaloxidationinafuelcellisproblematic.Presently,thereisonlyonefuelcelltechnologythathasdemonstratedsustainableandsulfur-tolerantelectrochemicaloxidationofJP-8.Taoetal(1)discussahigh-temperature(~1000C)ceramicoxide-conductingelectrolytefuelcellthatemploysanovelliquidtinanodethataffectselectrochemicaloxidationofJP-8.TheliquidtinanditssolubleoxidesareimbibedwithinaninertporousseparatorandcontactedononefacewithvaporizedJP-8andontheotherfacewithazirconiaelectrolyte.Anoxygen-reducingelectrodeadjacenttheoppositesideofthezirconiaelectrolytecompletesthefuel-cellcircuit.Oxidesformedatthetin-electrolyteinterfacearetransportedtothefuelsideofthetinlayerwheretheyoxidizethefuelwithcommensurateelectronflowthroughthetinconductortotheanodecurrentcollector(hence,so-called“indirectelectrochemicaloxidation”ofthefueloccurs).Therearemanyvariablesyettobefullyexploredinthisapproachthatwilleffecttheefficacyoftheliquid-metalanodefuelcell,suchaschoiceofliquidmetal(othersinadditiontotinmaybeappropriate);liquid-metalfilmthickness;materialandphysicalpropertiesoftheinertseparatormaterial(porosity,poresize,poredensity,…);oxide-conductingelectrolyte;aircathode;temperature,etc.Thepurposeofthistopicistoexploretherelevantparameterspaceanddevelopasulfur-tolerantliquid-anodeJP-8fuelcellpowergeneratorbaseduponanunderstandingofthefundamentalphysicochemicalphenomenathatdictateitsoperation.

PHASEI: IdentifyandevaluatecandidateliquidmetalanodesforelectrochemicaloxidationofJP-8inanoxide-conductorfuelcell.Characterizerelevantphysicochemicalprocessesandparametersthataffecttheefficiencyoftheindirectelectrochemicaloxidationprocess.Formulaterelevantmathematicalmodelsoftheliquid-anodefuelcelltounderstandthefunctioningofthecellandforutilizationinsubsequentoptimizationstudies.Presentaconceptualstudyofacomplete500-Wliquid-metalanodefuelcellsystem.

PHASEII: Design,construct,evaluate,andoptimizea500-Wliquid-metalanodefuelcellgeneratorthatutilizesJP-8directlyasthefuel.Anobjectiveistodevelopthemostcompactpowergeneratorobtainablethroughtheliquid-metalanodetechnology.DeliveronecompletegeneratortotheArmyforevaluation.

PHASEIII:DualUseApplications:Developmentsinfuelcellswillhaveimmediateimpactonawiderangeofmilitaryusesaswellascommercialpowersourcessuchascomputerpower,emergencymedicalpowersupplies,recreationalpower,etc…

REFERENCES:

1.

KEYWORDS:Fuelcell,batterycharger,liquidmetalanode,JP-8

A08-T008TITLE:ImprovedPhysicalSecurityofMilitaryBasesthroughPerimeterTagging

TECHNOLOGYAREAS:Materials/Processes

OBJECTIVE:TheObjectiveistodevelopamultifunctionalspectroscopictagthatisinvisibletothenakedeyeandcanonlybeseenwheninterrogatedusingaman-portableinfra-red(IR)viewingdevice. TaggingwillbeaccomplishedbythephysicaladsorptionofamaterialthathasthecapabilitytosignificantlychangeanIRsignatureofthesurface,whichincludesvariousgroundsurfaces,fencematerials,handsandclothing. Whenonthegroundoraphysicalbarrier,iftouched,thematerialwillshowthattheareahasbeendisturbedbyinterrogatingitsIRsignature. Thismaterialwillalsoadheretoandmarkindividualswhohavegainedunauthorizedaccesstoafacilitybypassingthroughthetaggedarea. Thistechnologywillincreasephysicalsecuritybyidentifyingtheseindividualsanddefiningtheirentryandexitpointsatabaseperimeter.

DESCRIPTION:Theabilitytomonitortheunguardedperimeteraroundmilitaryinstallationsandtotagandidentifyindividualswhohaveillegallyenteredthesefacilitiesiscriticaltophysicalsecurity. Aneffectivetaggingstrategyrequiresthatthetaggantbeinvisibletothenakedeye,easilyappliedtopotentialentrypoints,suchasthegroundaroundanunguardedfenceoronaphysicalbarrier,possesssuitablestabilitysuchthatitlastsformonthsbeforereapplicationisrequired,withstandoutsideambientconditions,includingextremesintemperature,humidity,andsunlight,covertlyshowsthatthegroundorbarrierhasbeendisturbed,andtransferstotheintruderoncasualcontactandremainscovertlyattacheduntilinterrogationwithasuitabledevice. Thetagshouldhaveexcellentadhesiontoavarietyofsurfacesincludingvariousgroundsubstances,metals,fabrics,andskin,mustbesafeforhumanexposure,environmentallybenignandcost-effective. Detectionofthetagrequiresasimpledevice,suchasaman-portableinfra-red(IR)viewerthatallowsdetectionatbothcloserangeandatadistanceof200metersfromthegroundandair. ThisTopicmayexploitadvancesinfunctionalnanoparticlesynthesis[1,2]topreparematerialsthatcontainfunctionalitythatmeetthecriteria.

PHASEI: ResearchwillfocusonidentifyingmaterialsthatsignificantlychangetheIRsignature[3-5]ofthesurfacetowhichithasadheredwhendisturbed ForthepurposesofthisTopic,materialisdefinedasaparticle,material,compound,orfunctionalitythatrespondstoandmeetstheadhesion,environmental,health,weathering,stability,anddetectioncriteriadescribedherein. Materiallifetimeandstabilitywillbedeterminedinenvironmentaltestchambersforevaluationwithexposuretosimulatedweatherconditions,includingelevatedheat,humidityandcontinuousUVexposure. Usingaman-portableinfra-red(IR)viewingdevice,thedensityofmaterials(g/m2)thatisrequiredtoobserveasignificantchangeintheIRsignatureofasurfacewillbedeterminedat1,10,50,100,and200meters. MaterialadhesionaswellasIRsignaturedemarcationmustbedemonstratedonavarietyofsurfaces[variousgroundsubstances(e.g.,dirt,leaves,sand,gravel,rocks,pineneedles),aluminum,galvanizedsteel,skin,andfabrics]. Researchwillbeperformedthatexaminestaggedsurfacesbeforeandafterbeingdisturbed,andtheleveloftaggantrequiredtoobserveIRchanges(i.e.,g/m2requiredtoobserveaneffect). PhaseIwillprimarilyinvolvescreeningexperimentsdesignedtoprovideproofofconceptofthisapproachandtoidentifycandidatematerialsfordown-selectionanduseinPhaseII. Humansafetyandenvironmentalimpactmustbeaddressed. Aclearpresentationofhowthetechnologywouldworkinthefieldmustbepresented.

PHASEII: Materialadhesiontothesubstratesandtransferfromonesubstratetoanotherwillbequantifiedusingstatisticallyrelevantmetrology. Studieswillincludetransferfromgroundandmetal(aluminum,galvanizedsteel)surfacestoskinandtocommonfabricstodeterminewhethertheamountoftagganttransferredwillmakeasignificantchangeintheIRsignatureoftheaffectedsurfaces. Also,studiesshouldbeperformedthatprovidequantitativedatatoshowhowtheIRsignaturechangesondifferenttaggedgroundsubstancesafterbeingdisturbed. Theconcentrationofmaterialwillbeoptimizedtomaximizetheseeffectsandshouldbecharacterizedregardingsignaturechangeasafunctionofdistance. Thebestmethodofapplicationoftaggantmaterialontosurfacesofinterestwillbedeterminedandoptimized. Conditionsthatdeactivate,inhibit,andremovethetaggantmaterialfromthesurfaceormakeitunusableshouldbedeterminedandaddressed. Environmentaltestchamberswillbeusedtodetermineexposuredatafortaggantmaterialsoverextendedperiodsofelevatedheat,humidity,andcontinuousUVexposuresuchthatrealisticlifetimesandstabilitiesaredeterminedforcandidatematerials. Anintegratedsystemwillbespecifiedthatincludestaggantmaterialandaman-portableinfra-red(IR)viewingdevice(e.g.,digitalcamerawithviewerthatallowsimagestorageofamarkedindividualinstandardimageformat). Initialscale-upstudiesoftaggantmaterialmaybeperformed. AmodelshouldbedevelopedthatallowstheArmytounderstandthecostsassociatedwiththistechnology.

PHASEIII: Thistechnologywouldbeofgreatinteresttocommercialshippers,securitycompanies,police,andotherinstitutionsthatrequirecontrolledaccess.

REFERENCES:

1. Zhang,G.;Niu,A.;Peng,S.;Jiang,M.;Tu,Y.;Li,M.;Wu,C.,"FormationofNovelPolymericNanoparticles,"Acc.Chem.Res. 2001,34,249-256.

2. Song,J.-S.;Tronc,F.;Winnik,M.A.,"Two-StageDispersionPolymerizationtowardMonodisperse,ControlledMicrometer-SizedCopolymerParticles,"J.Am.Chem.Soc. 2004,126,6562-6563.

3. Zhang,J.;Badger,P.D.;Geib,S.J.;Petoud,S.,"SensitizationofNear-Infrared-EmittingLanthanideCationsinSolutionbyTropolonateLigands,"Angew.Chem.Int.Ed. 2005,44,2508-2512.

4. Langhals,H.,"AnUnexpectedlySimpleNIRDyefor1.1micronswithaCentralMesoionicStructure,"Angew.Chem.Int.Ed. 2003,42,4286-4288.

5. Blake,I.M.;Rees,L.H.;Claridge,T.D.W.;Anderson,H.L.,"SynthesisandCrystalStructureofaCumulenicQuinoidalPorphyrinDimerwithStrongElectronicAbsorptionintheInfrared,"Angew.Chem.Int.Ed. 2000,39,1818-1821.

KEYWORDS:tagging,tracking,spectroscopy,infrared,remoteidentification,physicalsecurity

A08-T009TITLE:ANanotechnology-BasedHydrogenGeneratorforaCompactFuelCellPowerSystem

TECHNOLOGYAREAS:Ground/SeaVehicles,Materials/Processes

OBJECTIVE: Developacompactdevicetoproducehydrogenfromthethermaldecompositionofachemicalhydridethatissupportedonananostructuredmatrixandintegratethishydrogengeneratorintoasoldierportable,polymerelectrolytemembranefuelcellpowersystem.Thepowersystemmustproduce20Wfor72hwithaminimumsystemenergydensityof1kWh/kg.

DESCRIPTION: TheArmyhasneedforhigh-energy,lightweightpowersourcesforthesoldier;forexample,onepotentialscenariorequires20W(netelectric)forathree-daymission(1.5kWh).Hydrogen-airpolymerelectrolytemembranefuelcells(PEMFCs)arecandidatestofillthisandsimilarneeds(1),butthesourceofhydrogenisproblematic(2).ThethermaldecompositionofchemicalhydridestoproduceH2isapotentialsolutionbuttherateofthermolyticdecompositionistooslowand/orthetemperatureistoohighforasoldiersystem(3);however,recentresearch(4)reportsthatcontrollingthephysical/chemicalenvironmentatthenanoscaleofthechemicalhydrideundergoingthermolysisyieldsimprovedperformanceinthesematerials.Gutoswskaetal.(4)showthatthechemicalhydrideammoniaboraneisdecomposedtohydrogenfasterandatalowertemperaturewhensupportedonananoporoussilicaframework(SBA-15)incomparisontotheunsupported(neat)material.Theauthorsspeculatethatthenanostructuredscaffoldingofthesilicaaffectsthedecompositionpathwayofammoniaboraneand/orthesurfacesilanolgroupsofthenanosupportplayacatalyticroleinthehydridedecomposition.Theauthorsfurtherhypothesizethatmesoporousmaterialsasasupport,ingeneral,mayimprovethekineticsandthermodynamicsofhydrogenproductionfromotherchemicalhydridesplacedon/withinthem,asmayhavebeenobservedbyZutteletal.(5)inthedecompositionofLiBH4mixedwithSiO2powder.ItremainsuncleariftheproductionofH2fromother(lowercostbutequallyH2-rich)chemicalhydridesinadditiontoammoniaboranecanbeeffectedinapositivemannerthroughananostructuredsupport.ItisalsounknownifthermalmanagementissuesmightariseinaH2-producingdevicethatutilizesasupportedchemicalhydride.Theweightandvolumeofthesupportitselflowerstheenergydensityofthehydrogen-generatorsystem,anditisuncertainifthetargetenergydensityforthethree-daymissionisobtainable.Theseandotherissues(includingcostandenvironmentalimpact)mustbeexaminedbeforethenanotechnology-basedhydrogengeneratordescribedabovecanbemadeavailableforadismountedwarriorPEMfuelcellsystem.

PHASEI: Identify,design,construct,andevaluateatthebreadboardlevelahydrogengeneratorthatutilizesthethermolyticdecompositionofachemicalhydridesupportedonananostructuredmatrix.Demonstratequantitativelyimprovementsrealizedinhydrogenproductionrate,operationtemperature,andreactantconversionincomparisontotheunsupportedhydridecompound.TheH2generatormustbefedwithahydridefuelpacket,witheachpacketsufficienttosupport24-hoperationofa20-W(net)PEMfuelcellpowersystem.Controlandthermalmanagementissuesandsubsystemsmustbeidentifiedanddemonstrated.Developaconceptualdesignthatintegratesthehydrogengeneratorintoasoldier-portable,20-WPEMfuelcellgenerator.

PHASEII: Design,construct,andevaluateacompacthydride-basedhydrogengeneratorthatutilizesnanostructured-supportmaterialsforthehydrideandintegrateintoasoldierportable20-W(net)PEMfuelcellpowersystemwithaminimumsystemenergydensityof1kWh/kgfor72-hoperation.Onecomplete20-W(net)powersystemfortestandevaluationistobedeliveredtotheArmywiththirtyfuelpacketstosupplytenthree-daymissions.

PHASEIII:DualUseApplications:Developmentsinsafehydrogensourcesforfuelcellswillhaveimmediateimpactonawiderangeofmilitaryusesaswellascommercialpowersourcessuchascomputerpower,emergencymedicalpowersupplies,recreationalpower,etc…

REFERENCES:

1.A.Pateletal.,“PortablefuelcellsystemsforAmerica’sArmy:technologytransitiontothefield,”J.PowerSources,136(2004)220-225.

2.N.SiferandK.Gardner,“Ananalysisofhydrogenproductionfromammoniahydridegeneratorsforuseinmilitaryfuelcellenvironments,”J.PowerSources,132(2004)135-138.

3.AROWorkshopProceedings,“HydrogenStorageandGenerationforMedium-Powerand–EnergyApplications,”UniversityofSouthCarolina,M.Matthews,ed(1997).

4.A.Gutowskaetal.,“NanoscaffoldMediatesHydrogenReleaseandtheReactivityofAmmoniaBorane,”Angew.Chem.Int.Ed.,44(2005)3678-3582.

5.A.Zutteletal.,J.PowerSources,118(2003)1-7.

KEYWORDS:Chemicalhydride,hydrogen,fuelcell,soldierpower

A08-T010TITLE:ACompactSolidAcidElectrolyteFuelCellGenerator

TECHNOLOGYAREAS:Ground/SeaVehicles,Materials/Processes

OBJECTIVE:Developahydrocarbon-fueledsolidacidelectrolytefuelcellgeneratorthatdoesnotrequirewatermaintenanceandoperatesattemperaturesbetween200and400°C.Thecompactpowersystemmustproduce20W(net)for72hwithaminimumsystemenergydensityof1kWh/kg.

DESCRIPTION:TheArmyhasneedforhigh-energydensity,lightweightpowersourcesforthedismountedwarrior.Hydrogen-airanddirect-methanolpolymerelectrolytemembranefuelcells(PEMFCs)arecandidatestofilltheseneeds,butthepolymerelectrolytemembranemustbehydratedforprotonconductivity,whichaddsthecomplexityofawater-managementsubsystemtothepowergeneratorandlimitsthecelloperationtemperaturetoapproximately80Corlower. Additionally,becausehydrocarbonreformersproducecarbonmonoxideasaco-productwithH2,aCOscrubberisneededsoasnottopoisonthefuelcell’splatinumelectrodes,whichalsoaddsadditionalweightandcomplexitytothepowergenerator.Highertemperatureoperation(>120C)ofthecellwouldbeadvantageousinthatheat-transfercharacteristicsofthecellstackimproveandCOpoisoningoftheelectrodesisnotaconcern.Certainclassesofsolidacids(e.g.,CsHSO4orCsH2PO4)areprotonconductorsthathaverecentlybeendemonstratedtofunctionaseffectiveelectrolytesattemperatures200Candhigher(1-4),andthesematerialshavebeenincorporatedascombinationelectrolyte/separatorinlaboratoryscalefuelcellsfedbyH2ormethanol(5).Thelong-terminterfacialelectrode-electrolyteimpedanceinthesesolidacidelectrolytecellsisachallenge,anditisunknownifapracticalfuelcellpowersystemcanbebuiltaroundthisintermediate-temperatureclassofprotonconductingelectrolytes.Thepresenceofliquidwaterinthecell(atstart-uporshut-down)mayalsobeproblematic.Theelevatedoperationtemperatureofthesolidacidcells,ontheotherhand,presentstheintriguingpossibilityfordirectelectrochemicaloxidationofhydrocarbonsand/orinsitureforming.Theseandotherissuesmustbeexaminedtodetermineifacompactpowersystemcanbebuiltaroundaproton-conductingelectrolyteandprovidethepowerneedsforthedismountedwarrior.

PHASEI:Design,construct,andevaluateahydrocarbon-fed,bench-scale,single-cellfuelcellthatutilizesasolidacidelectrolyteanddemonstrateamulti-cellstackbasedupontheseresults.Includeallcontrolandancillarysubsystemsrequiredtoproducepowerfromamulti-cellstack.Polarizationcharacteristics(voltagevscurrentandpowerdensity)ofthecellandcellstackshouldbereported,aswellasinterfacialimpedancebehavioroftheelectrolyte-electrodeinterface.Provideaconceptualdesignofa20-W(net)powersystembasedupontheresultsgeneratedintheseefforts.

PHASEII:Design,construct,andevaluateacompact20-WgeneratorbaseduponthesolidacidelectrolyteandhydrocarbonfuelstudiedinPhaseI.Thecompactpowersystemmustproduce20W(net)for72hwithaminimumsystemenergydensityof1kWh/kg.

PHASEIIIDUALUSECOMMERCIALIZATION:Developmentsinfuelcellpowersourceswillhaveimmediateimpactonawiderangeofcommercialpowersourcesfromcomputerpowertoemergencymedicalpowersuppliestorecreationalpoweruses.

REFERENCES:

1.T.Udaetal.,SolidStateIonics,176(2005)127-133.

2.Chisholmetal.,PhysicalReviewB,72(2005)134103-134123.

3.T.UdaandS.Haile,ElectrochemicalandSolid-StateLetters,8(2005)A245-A246.

4.T.Udaetal,ElectrochemicalandSolid-StateLetters,9(2006)A261-A264.

5.S.Haileetal,FaradayDiscussions,134(2007)17-39.

KEYWORDS:Fuelcell,protonconductor,solidacidelectrolyte,soldierpower

A08-T011TITLE:ActiveTransportExchangeforCompactSustainedPower

TECHNOLOGYAREAS:Ground/SeaVehicles,Materials/Processes

OBJECTIVE:Todevelopadvancedsyntheticmembranesandstoragesystemsbasedonthebiologicalgill-swimbladdersystemandcreateauniqueapparatuscapableofgatheringandstoringoxygenforuseinfuelcellstoprovidecompactsustainedpowerineitherunderwaterorhighaltitudeenvironments.

DESCRIPTION: Moleculartransportmechanismsincellularmembranes,whichareinherentlybothefficientandselective,providetremendousmotivationforutilizingthesemechanismsinsyntheticmaterials. Amongthevarioustransportmechanismsutilizedbycellularmembranes,activetransportaffordstheuniquecapabilityofsolutetransportationagainstaconcentrationgradient. Inmarinebiology,gillsutilizehemoglobintoabsorboxygenfromthewaterandtransportittotheswimbladderforstorage. Thisgill-swimbladdersystemconstitutesanidealmodelfromwhichtodesignanovelapparatussuitableforextractingoxygenforfuelcellstoprovidesustainedpowersourcesineitherunderwaterorhigh-altitudeenvironments. Advancesinmolecularbiologynowprovideavarietyoftoolscapableofdeterminingthequantitativetissue-specificandspatialdistributionsofthetransportproteinswhichgovernthegill-swimbladdersystematthemolecularscale. Thesetoolsenablerobustandrapidcharacterizationofthestructure,dynamicsandfunctionofthesetransportsystems. Furthermore,recentbreakthroughshavedemonstratedtheabilitytoreconstitutebiologicaltransportproteinsandtoinsertthemintosyntheticmaterialswhileretainingtheirfunctionality. Recentaccomplishmentsincountercurrentexchangeandionicliquidseparationsalsoofferexcellentpotentialtoenableoxygensourcesforcompactsustainedpower.

Whatisexpectedfromasuccessfuleffortisthecreationofacompactsustainedpowersourcecapableofextractingandstoringoxygendirectlyfromamarineorhighaltitudeenvironmenttosupplyafuelcell. Theuseofnovelsyntheticmembranestofacilitateactivetransportexchangeisexpectedtoprovidethebreakthroughabsorptionandcollectionpropertiesnecessarytodevelopafunctionalapparatus. Identificationanddesignofoptimalfluidstofacilitateoxygentransportisexpectedtosignificantlyimprovedesignperformance. CompactsustainedpowerdeviceswouldhavedirectapplicationinUUVs,UAVs,underseadistributednetworksystems,andeventosustainedpresencesensorscapableofoperatinginabroadrangeoflow-oxygenenvironments.

PHASEI:Designanddemonstratesyntheticmembranesandstoragesystemstoprovideoptimaloxygenextractionandstoragefromamarineorhighaltitudeenvironment. Select,fabricate,anddemonstrateanoptimizedmaterialsolutionandprovideaquantitativecharacterizationofoxygenextractionandstoragecapacityinmarineorhighaltitudeenvironmentsscalabletooxygengasextractionofatleast2mL/min/m2filter. Developaconceptualdesignforacompletepowersourceusingtheseresults,includingestimatesofthecapabilitiesandrequirementsofacompletesystem.

PHASEII:Constructaprototypedesignforacompactsustainedpowersourceanddemonstratethecapabilitiesofthedesigninunderwater,highaltitude,orotherlowoxygenenvironments. Refineandoptimizepowerandstoragecapacityrequirementstoachieveoxygengasextractionof4mL/min/m2filter.

PHASEIIIDUALUSECOMMERCIALIZATION:Noveloxygenextractionandstoragesystemswillenableuniquecompactsustainedpowersourcesforabroadrangeofmilitaryandcivilianuse,includingthatbywarfigthers,firstresponders,divers,andconstructionandsalvageworkers.

REFERENCES:

1.RandallDJ,CARDIOSCIENCE5(3):167-171SEP1994.

2.PerrySF,etal.,COMPARATIVEBIOCHEMISTRYANDPHYSIOLOGYA-MOLECULARINTEGRATIVEPHYSIOLOGY129(1):37-47SP.ISS.SIMAY2001.

3.MatsunoN,etal.,BIOCHIMICAETBIOPHYSICAACTA-BIOMEMBRANES1665,184-190.

4.ScovazzoP,etal.,INDUSTRIALANDENGINEERINGCHEMISTRYRESEARCH,43,6855-6860(2004).

5.GuptaG,AtanassovP,etal.,PROCEEDINGSOFTHEPOLYMERICMATERIALSSCIENCEANDENGINEERINGDIVISION,234THNATIONALMEETINGOFTHEAMERICANCHEMICALSOCIETY,BOSTONMA,AUGUST2007.

KEYWORDS:UnderwaterHighAltitudeOxygenTransportSustainedPower

A08-T012TITLE:Electrostaticatomizingfuelinjectorforsmallscaleengines

TECHNOLOGYAREAS:AirPlatform

OBJECTIVE:Design,developanddemonstratethefeasibilityofanelectrostaticatomizerthatwillenablesmallscale(5hp)enginestorunaspark-ignitioncycleonJP-8.

DESCRIPTION:DoDD4140.25(1)hasdirectedthatalllandbasedgroundandairforcesshalluseasinglefuelwithJP-8leadingtheorderofprecedence.Thereareseveralcurrentandfuturemilitaryapplicationswhereasmall(~5hp)sparkignitionpowerplantisdesirable,suchasUAVpropulsion.AhighflashpointfuelsuchasJP-8posesseveraltechnicalchallengeswhenusedinsuchasmallengineapplication.Onesignificantchallengeisinachievingsufficientatomizationtosupportasmallscalesparkignitionengine.Electrostaticatomizationisapotentialpathtoachievingsufficientatomizationtoallowlowvolatilityfueltobeusedinsuchsmallscaleengines.AsecondchallengewouldbetoachievethiselectrostaticatomizationusingJP-8fuelasspecifiedbyMIL-DTL-83133E(2),i.e.withouttheadditionordeletionofanyadditivesoradditivepackagesbeyondthespecification.Recentstudies(3)haveshownthatonemethodofelectrostaticatomization,chargeinjection,isespeciallypromisingatpromotinginitialspraybreakupanddispersionaswellassecondaryatomization(4).Further,chargeinjectionhasbeenshowntobeabletooperateunderapulsedinjectionscheme(5).Thiswouldenableadirectinjection,non-throttled,sparkignitionengineusingalow-volatilityfuelwhileenhancingengineefficiencyandcontrol.

PHASEI:Design,developanddemonstrateaelectrostaticatomizerthatwillenableatomizationofJP-8fuel(asspecifiedbyMIL-DTL-83133E)sufficienttobeusedinasmallscale(5hp)sparkignitionengine.DeliveraplanforachievingpulsedatomizationtoenableDirectInjectionSparkIgnition(DISI)inPhaseII.

PHASEII:Design,developanddemonstrateapulsedinjectionelectrostaticatomizerwhichenablesa5hpflight-weightengineinaDISIcycleusingJP-8fuel(asspecifiedbyMIL-DTL-83133E).DeliveronesystemtotheArmy.

PHASEIIIDualUse:DevelopmentofelectrostaticatomizationinjectorstoenableDISIcycleonsmallscaleengineswithlow-volatilityfuels(JP-8andDF-2)willallowhigherefficiency,improvedemissionsandincreasedsafetyforsmallscaleenginesinwidespreadusethroughoutthecommercialcommunity.

REFERENCES:

1.DoDDirective4140.25,"DoDManagementPolicyforEnergyCommoditiesandRelatedServices",April12,2004.

2.MIL-DTL-83133E,“DetailSpecification–TurbineFuels,Aviation,KeroseneTypes,NATOF-34(JP-8),NATOF-35,andJP-8+100,”April1,1999.

3.Shrimpton,J.S.andRigit,A.R.H.,(2006)AtomizationandSprays,v16pp421-444.

4.Lehr,W.andHiller,W.(1993)JournalofElectrostatics,v30pp433-440.

5.Shrimpton,J.S.andLaoonual,Y.,(2006)IntlJforNumericalMethodsinEngineeringv67pp1063-1081.

KEYWORDS:electrostatic,spray,fuelinjection,uavpropulsion,pulsedinjection

A08-T013TITLE:Time–DomainTerahertzEllipsometryforReflection-ModeSensing

TECHNOLOGYAREAS:Chemical/BioDefense,Sensors

OBJECTIVE: Thedevelopmentanddemonstrationofanewscientificinstrument–atime-domainterahertz(THz)ellipsometer–thatwillofferasignificantlyadvanced(e.g.,reliableandreal-time)THzfrequencycharacterizationcapabilityforobjectinterrogationandsignatureacqusitioninreflectiongeometries.

DESCRIPTION: TheubiquityofpicosecondtimescalesincondensedmattermakesmeasurementtoolsemployingTHzradiationpotentiallyquiteuseful[1].Unfortunately,measurementsinthisspectralrangehavebeenchallengingtoimplementastheylieintheso-called``THzgap''-abovethecapabilitiesoftraditionalelectronics,butbelowthatofopticalgeneratorsanddetectors(photonics). Inrecentyearstherehavebeenanumberofdramaticadvancesintheformoftime-domainTHzspectroscopy,whichallowmeasurementsthatspanthisgapandhavemadethisanexcitingandemergingareaofopticalandmaterialsresearch.However,anoutstandingtechnicalproblemhasbeendeterminingcomplexopticalconstantsofmaterialswhenperformingmeasurementsinreflection,thusleavingtheonlyreliablemeasurementstothosewherethetargetobjects/materialsaretransparentenoughtoperformtransmissioncharacterization. However,transmissionmeasurementsarenotfeasibleformanytargetobjects/materialsandsofarthetechniquehasbeendifficulttoapplytomanymetals,thickorhighlydopedsemiconductors,coatingsonopaquesubstrates,substancesinaqueoussolution,andanyotherwiseopaquecompound. Hence,theinabilitytoperformreliablereflectionbasedTHzmeasurementsissignificantlyretardingprogressinthisfield.Thisprojectaimstoaddressthisproblembydevelopingacompletelynewspectroscopictechniquethatcircumventsexistingtechnicalissuesandallowstime-domainTHzmeasurementstobeperformedquickly,reproducibly,andeventuallyroutinelyinreflection.

ThisprojectseeksthedevelopmentanddemonstrationofaTHztime-domainellipsometerthatwillovercomeexistingtechnicalproblems. Ellipsometryisastandardtechniqueatopticalfrequenciesforevaluatingopticalthinfilmcoatingsandhasenabledamulti-billiondollarindustry.Therefore,theapplicationofthistechniquetotime-domainTHzspectroscopywillfacilitateacompletelyuniquemeasurementtoolthatwillimpactanumberofresearchareascurrentlyofintenseinteresttothemilitary. Theseincludemeasurementsofthebroadbandresponseofstealthappliqués(e.g.,anovelpaintreplacementtechnology)[2,3],metrologyofdielectriclayersburiedunderthinmetalfilms,generalTHz-rangematerialscharacterization,meta-materialsdevelopment[4],thecharacterizationofbiologicalspecimensinaqueoussolution[5],andthesecuritydomain(explosivesandbiohazarddetection)[6,7].

Asstandardpolarizingelementsperformpoorlyinthisspectralrange,itisanticipatedthatusewillbemadeofanadvanceintheAustonswitchdetectorsusedfortime-domainTHz.Specifically,ithasbeenrecentlyshownthat3-poleswitchescanbefabricatedthatcandetecttwoindependentpolarizationdirections[8]. Amongotheraspectstheywillenableanellipsometerwithnomovingparts.Weemphasizethatthegoalofthisprogramistodevelopageneralpurposeinstrumentthatwillenablemeasurementspreviouslyimpossible. ItisanticipatedthatwiththegeneralutilityandimportanceofTHzradiationandtheexistingproblemswithperformingTHzreflectionmeasurements,thisworkwillleadtoawholenewstandardtechniqueforperformingspectroscopyintheTHzspectralrangeandimpactmanyareasofappliedscienceandindustrythatwillleadtopayoffsfornationaldefenseandsecuritysuchasthoselistedabove.

PHASEI:PhaseIoftheprogramshouldinvestigateproof-of-conceptspectrometercomponentsandperformlaboratorymeasurementsthatconfirmtheutilityandeffectivenessofpolarizationtechniquesinachievingTHzreflectioncharacterizationsandsignatureacquisitions.Theeffortshouldalsoquantifyadesignforatime-domainTHzellipsometrythatcouldbeimplementedunderaPhaseIIeffort.

PHASEII: InPhaseII,afullprototypetime-domainTHztechniqueshouldbeimplementedanddemonstratedindefenseandsecurityrelevantsensingapplications.Here,thetechniqueshouldbeusedtogiveafullTHzcharacterizationand/orsignatureacquisitionforanarrayofmaterialsandobjects. Forexample,thetechniqueshouldbeappliedtosuchactivitiesas:stealthcoatingcharacterization,meta-materialsdevelopment,thecharacterizationofbiologicalmaterialinaqueoussolution,andthedetectionofexplosivesandbiohazardsinquasi-pointandstand-offscenarios.

PHASEIII: Inthethirdphaseoftheproject,techniqueswillbedevelopedforscalingupproductionoftheellipsometerandforenhancingthesensitivityandlowerassociatedcosts.Also,theprojectwilltransitionfromappliedsciencetomanufacturingschemesthatallowforwidescalecommercializationwhilepreservingthecapabilitiesofthespectrometer.Thisphasewillalsofocusonapplicationsareasthatpossessthelargestcommericalpayoffpotential.Here,itisanticipatedthatareassuchastestingforproductqualityassuranceandthreat-agentdetection(e.g.,chemical,biological,explosives)arepotentialareasofemphasis.

REFERENCES:

1.

2.

3.

4.J.B.PendryandD.R.Smith, PhysicsToday37,(June,2004).

5.M.Nagel,etal.,Appl.Opt.41,2074-8(2002).

6.K.Lewotsky,SPIEProfessionalApril,(2006).

7.S.Wang,B.Ferguson,D.AbbottandX.-C.Zhang,J.Bio.Phys.29,247-256(2004).

8.E.Castro-Camusetal.,Appl.Phys.Lett.86,254102(2005).

KEYWORDS:terahertzfrequency,time-domain,ellisometry,reflectionmode,threat-agentsensing

A08-T014TITLE:Micro-burnerBasedFlameIonizationDetectorsforMicro-scaleGasChromatographs

TECHNOLOGYAREAS:Chemical/BioDefense,Electronics

OBJECTIVE:Developandevaluateamicro-burnerbasedflameionizationdetectorandintegratewithamicro-scalegaschromatographforsensingfuelcomposition,chemicalwarfareagents,andexplosivevapors.

DESCRIPTION:Rapid,accurategassensingofvaporsassociatedwithtoxiccompoundsofchemicalwarfareagentsandimprovisedexplosivedevices(IEDs)isofcriticalimportancetotheArmy.Portablegas-sensingdevicespresentlyexist,buttheiraccuracyislow,whereaccuracyherereferstoalackoffalsepositives. AccordingtoarecentArmySoldierandBiologicalChemicalCommandreport,GC/FPD/MShardwareprovidestherequiredaccuracyandsensitivitybutcurrentdevicesaretooheavyandconsumetoomuchpowertobecarriedbyawarfighter. TheArmyneedsanewapproachforportablegassensorsthatprovidesreal-timerapidenvironmentalassessmentforthewarfighter. Micro-scaleMEMS-basedgaschromatographs(MEMS-GC)haverecentlybeendesignedandbuiltthatcansupporta7-daymission,withthesizeoftheMEMS-GC,detectors,reagents,powersupply,etc.ofonlyafewcubiccentimeters(1). Toreducefalsepositivesmultiplesensingmodalitiesareacriticalneed.However,mostmicro-sensingmodalitiesarefocusedonanarrowsetofcompounds. Toaidinsensingaspectrumofcompounds,flameionizationdetectors(FIDs)areadvantageous(2). Unfortunately,presentlyavailableFIDsaretoolargeandusesignificantquantityoffuel. Thereisaneedforafuel-efficientmicro-scaleFIDthatworksinconjunctionwithaMEMS-GCtoenableacompactandversatilegas-sensingapparatus. Recently,high-temperaturemicro-combustorsthatrunonhigh-energydensityfuelshavebeendevelopedthatcansupplytherequiredflame,temperatures,andsize(3-6). Thesebreakthroughsinmicro-burnersformabasisforportable,light-weight,andlong-missionlifegassensorswiththecapabilitytodetectandquantifyawidevarietyofcompoundswithlowfalsepositives.

PHASEI:Developamicro-flameionizationdetector(micro-FID)withcriticaldimensionsbelow1millimeterthatwillworkinconjunctionwithaMEMS-gaschromatograph. SelectthemostpromisingapproachesforintegrationwithaMEMS-GCsystem. Demonstratethedetectionofeight-contractorspecifiedbattlefield-relevantfuelsurrogates,simulants,andinterferentswiththemicro-FID.

PHASEII:Integratethemicro-flameionizationdetector,whichmustbelessthanafewccinvolumeincludingfuelfora7-daymission,withaMEMS-basedgaschromatograph. Demonstratethattheintegratedmicro-FID/MEMS-GCsystemaccuratelydetectsandquantifiesfuelcomponents,simulantexplosiveandCWagentsinthepresenceofinterferents.DeliveronecompletesystemtotheArmy.

PHASEIII/DUAL-USEAPPLICATIONS:Inadditiontoprovidingfuelsensors,CWandexplosivevaporsensorsfortheArmy,private-sectorcommercialpotentialwillbeintheareasofpropulsionsystemin-situfuelassessment(flexiblefuelsystems),homelandsecuritysystems,environmentalmonitoring,andindustrialgassensing.

REFERENCES:

1.Z.Ni,M.Shannon,K.Cadwallader,J.JerrellandR.Masel"AMetal-OrganicFrameworkBasedPreconcentratorForGasSamplingInAMicro-GasChromatograph" Proceedings9thInternationalConferenceOnMiniaturizedSystemsForChemistryAndLifeSciences,BostonOct2005,262-264.

2.ZimmermannS.,WischhusenS.,andMullerJ.,“Microflameionizationdetectorandmicroflamespectrometer,”SensorsandActuatorsB:Chemical,V.63(3),15May2000,159-166.

3.Miesse,C.M.,R.I.Masel,M.Short,andM.A.Shannon,“ExperimentalObservationsofMethane-OxygenDiffusionFlameStructureinaSub-millimeterMicroburner,”CombustionTheoryandModeling,InstituteofPhysicsPublishing,Ltd.V.9,2004,1-16.

4.Miesse,C.M.R.I.Masel,M.Short,andM.AShannon,"ExperimentalObservationsoftheStructureofaDiffusionFlameinaSub-millimeterMicroburner:FlameCellsandOtherUnexpectedEffects"CombustionTheoryandModeling,9,77-92,2005.

5.Miesse,C.M.,R.I.Masel,C.D.Jensen,M.AShannon,andM.Short,“Sub-millimeter-scalecombustion,”AICHEJOURNAL50(12):3206-3214(2004).

6.Masel,R.I.,FinalReport:DesignRulesforHighTemperatureMicrochemicalSystems,

KEYWORDS:Gas-chromatograph,Sensors,Flame-ionizationdetectors,micro-burners

A08-T015TITLE:BreathableElastomerMembraneLiner

TECHNOLOGYAREAS:Chemical/BioDefense,HumanSystems

OBJECTIVE:Developalightweightchemicalagentprotectivelinermembraneforindividualprotectivesuitsthatprovidessignificantevaporativecoolingtopreventheatstress,whileprotectingthesoldierfromexposuretochemicalwarfareagents(CWAs),toxicindustrialchemicals(TICs)andtoxicindustrialmaterials(TIMs).

DESCRIPTION:Currentprotectivegarmentsareeithermadefromimpermeableandnon-breathablematerials,oraremadefrombreathable,yetheavyorganic-absorbentmaterials.Forexample,butylrubberisusedtomakenon-permeableglovesandsuits,whichhaveexcellentchemicalwarfareagentresistance,butisalsoimpermeabletowatervapor.Thusheatstressisasignificantdebilitatingproblem.Thecurrentsolutionistoemployanactivatedcarbon/polymerlinermaterialinsideabreathablefabric,butthisalsoaddsasignificantweightburden.Forexample,theJointServiceLightweightIntegratedSuitTechnology(JSLIST)suitusesthisactivatedcarbontechnology.TheJointChemicalEnsemble(JCE)intendstomeetthesefuturerequirementsbyinsertingrevolutionarytechnologiesintochemicalprotectiveensemblesolutionsasthosetechnologiesmature.TheidealsolutionwouldbealightweightmembranethatisabarriertoCWAs,TICs,andTIMs,butwhichispermeabletowatervapor.Suchamembranecouldbelaminatedtoashellfabrictomakelightweightbreathableprotectiveclothing.Newmaterialsaresoughtforlinermembraneswhichresultinperformanceimprovementsthateitherincreasethelow-concentrationCWAthreatprotectionofcurrentlightweightgarments,withoutlimitingthephysicalactivitylevelofthesoldier,orwhichofferahigh-concentrationCWAthreatprotection,whiledecreasingtheheatstressassociatedwithnon-breathableprotection.Recentbasicresearchadvancesinacademiaincompositesofelastomersandnanopore-formingadditivesshowthatmembranescanbemadetoprovideanadequatelevelofwaterpermeationandsimultaneousCWAprotection.AhighlevelofprotectionagainstTICsandTIMsshouldalsopossibleusingthisclassofmaterials.Thehighlyselectivenatureofthesemembranesisaresultofthenanoporesinthebarriermembrane. Similarcompositesneedtobefurtherdevelopedandfullyevaluatedforuseasamembraneinindividualchemicalprotectivesuits.

PHASEI: Developanddemonstrateanewbreathableelastomermembranelinermaterialforchemicalagentprotectiveclothing.CharacterizethepermeationofCWAsimulants,TICs,TIMsandmeasurethewatervaportransmissionrate.ComparetheresultsagainstsamplesofbutylrubberglovesandJLISTsuits.Basedonthepermeationresults,determinethefeasibilityofusingthemembraneinprotectivegarments.

PHASEII: Scaleupproductionofthemembranelinermaterialanddevelopmethodsforlaminatingthelinertogarmentfabrics.MeasurethepermeationresistancetolivechemicalagentsinadditiontocommonTICsandTIMs.Testfordurability,flameresistance,stabilityunderenvironmentalconductionandrepeatedlaundering.

PHASEIII: Commercializethelinermembraneandtransitionitintotheappropriateacquisitionprogram. DoDwillpurchaseaminimumof4millionadditionalCBprotectivegarmentsfromFY07throughFY12.Additionally,privatesectorapplicationswillbesalestothedomesticpreparednessmarketincludingDept.ofHomelandSecurity,localpolice,EMS,etc.Also,thereareapplicationsinthechemicalindustryforprotectionfromhazardouschemicals.

REFERENCES:

1.StrategiestoProtecttheHealthofDeployedU.S.Forces: ForceProtectionandDecontamination;Wartell,M.A.;Kleinman,M.T.;Huey,B.H.;Duffy,L.M.,Eds.;NationalAcademyPress: Washington,DC;1999.

2.JizhuJin,etal.;"Cross-linkedLyotropicLiquidCrystal-ButylRubberComposites:Promising"Breathable"BarrierMaterialsforChemicalAgentProtectionApplications"ChemistryofMaterials,2005,17,2,pg224-226.

3.XiaoyunLu,etal.;"Cross-linkedBicontinuousCubicLyotropicLiquidCrystal-ButylRubberComposites:HighlySelective,Breathable,BarrierMaterialsforChemicalAgentProtection"AdvancedMaterials,2006,Vol18,no24,pg3294-3298.

KEYWORDS:elastomer,breathablemembrane,protection,chemicalwarfareagents,TICs,TIMs

A08-T016TITLE:DevicesandTextilesforBroad-SpectrumProtection

TECHNOLOGYAREAS:Chemical/BioDefense,HumanSystems

OBJECTIVE:Developnewreactive,poroussolidstosupplementorreplaceexistingmaterialsusedforindividualtroopprotectionagainstchemicalandbiologicalwarfareagents(CBWs)andtoxicindustrialchemicals(TICs).

DESCRIPTION:Activatedcarboniswidelyusedinfiltrationapplicationstoremovechemicalcontaminantsfromgases.Themajorbenefitsofactivatedcarbonareitslargesurfaceareaandextensiveporosity,whichallowittoadsorblargeamountsofchemicals,anditslowcostofproduction.However,themajorityofitsporosityconsistsofmicropores,whichcanhinderthediffusionofmoleculestoadsorptivesites,anditscolor(black)makesitdifficulttocolorimetricallydeterminewhenalloftheadsorptivesiteshavebeenexhausted(end-of-life).Activatedcarbondoesnotremovebiologicalcontaminants;thus,broad-spectrumprotectionagainstchemicalandbiologicalcontaminantshasusuallybeenaccomplishedbycombiningitwithHEPAfilters.However,thebiologicalcontaminantsaresimplyexcludedbythismethod,notdestroyed. Recentantimicrobialworkandnewnanoporousdesignedmaterialsinacademiahaveledtoadvancesinthisarea.

Consequently,newporoussolidswiththefollowingcharacteristicsareneeded:(1)containahighlyinterconnectedmicro/meso/macroporousframeworkwithalargefractionofmeso/macropores,asdeterminedfrompowderX-raydiffraction,N2physisorption,andsolidstateNMRtechniques;(2)retainatotalsurfaceareainexcessof500m2/g;(3)presentawhiteorlightbackgroundtofacilitatecolorimetricend-of-lifedetection;(4)besynthesizedinarapid,facile,andlowcostmethod;(5)beeasilydopedwithmetalssuchasCu,Ag,Zn,Mo,andVforenhancedadsorption.ThesesolidsmustbecombinedwithreactivepolymersthatcouldbecoatedontoHEPAfiltersortextiles,toproducedevicesandmaterialsthatmeetthefollowingcriteria:(1)showdecreasedbreakthroughtimesofthreetypesofchemicalagentsandtentypesofTICsovercurrenttechnologiesbasedonactivatedcarbon;(2)whenimpregnatedwithorganicdyes,showrapid(lessthan2min)colorchangestoindicateadsorptionagainstCBWsandTICs;(3)showatleasta4logkillofvirusesand5logkillofotherbiologicalcontaminants.Thedevicesandmaterialsshouldbeconsistentwithcurrentlyfieldedtechnology,sothattheycouldbeusedwithcurrentequipment.Theproposershouldhaveatrackrecordofresearchandcollaborationintheareasofporoussolidsandfiltration.

PHASEI:Synthesizetwotypesofporoussolidswithintegratednetworksofporewithvariousdiametersanddopethemwithmetals.PreparepelletswithvariousmeshsizesandperformbreakthoughtestswithfivetypesofTICsandthreetypesofchemicalwarfareagentsimulantsandidentifydecompositionproducts,ifany.Identifyorganicdyesthatcouldbeincorporatedintothepelletsandmeasuretherateofcolorchangeuponexposuretosimulants.

PHASEII:Downselectfortheoptimumcombinationofporoussolid,meshsize,andmetaldopantsbasedonPhaseIresults.Performpilotplantlevelscale-upofsynthesisofporoussolidsandpellets.CombinepelletswithHEPAfilterscoatedwithreactivepolymersanddemonstrateatleast4logkillagainstoneviralbiologicalwarfareagentsurrogateand5logkillagainstthreeotherBWAsurrogates.Developdevicesthatmimicexistinggasmaskcartridgesandtextilesusedinbroad-spectrumprotectionapplications.Performtestsagainstlive-agentCBWsandTICs,andseveralcross-interferenceandfieldinterferencetests,identifyinganydecompositionproducts.

PHASEIIIDUALUSEAPPLICATIONS:Thisphaseshouldincludelarge-scalesynthesisandproductionoftheappropriateporoussolidsandpelletsaswellaspreparationandsaleoftheresultingproducts.Thedevicesandtextilesthatresultfromthisprojecthavethepotentialforuseinindustrialandcivildefensefieldswherefiltrationofandprotectionfromchemicalandbiologicalcontaminantsisrequired,forexampleinthehealthcarefield.Thereisalsopotentialusebyfirstrespondersandemergencyresponders.

REFERENCES:

1. Clark,R.M.;Lykins,Jr.,B.W.Granularactivatedcarbon:Design,operation,andcost;LewisPublishers,Inc.:Chelsea,MI,1989.

2. ChemicalandBiologicalTerrorism:ResearchandDevelopmenttoImproveCivilianMedicalResponse;NationalAcademyPress,Washington,DC,1999.