Polyfluoroalkyl Phosphate Esters and Perfluoroalkyl Carboxylic Acids in Target Food Samples and Packaging – Method Development and Screening

Wouter A. Gebbink*, Shahid Ullah, Oskar Sandblom, Urs Berger

Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden

* Corresponding author: Phone: +46 8674 7519; Fax: +46 8674 7638; E-mail:

Supplementary Material

Table S1 List of identified mono-, di-, and triPAPs and their UPLC/MS/MS parameters

Table S2Matrix effects and recoveries of mono-and diPAPs spiked to a fish homogenate

Table S3Concentrations of 6:2/6:2 and 8:2/8:2 diPAPs and corresponding MLOQs in food samples

Table S4Recoveries (including matrix effects) of 13C-labeled mono- and diPAPs and M8PFOA in food analysis

Table S5Relative abundance of detectable mono, di, and triPAPs in food packaging materials (based on peak area compared to 6:2/6:2 diPAP)

Table S6Relative abundance of detectable diPAPs in food samples(based on peak area compared to 6:2/6:2 diPAP)

Table S7Detection of PFCAs in food packaging materials

Figure S1 Chemical structures of 6:2 monoPAP, 6:2/6:2 diPAP, and 6:2/6:2/6:2 triPAP

Figure S2 MRM chromatograms of multiple product ions for coeluting 10:2/10:2, 8:2/12:2, and 6:2/14:2 diPAPs in a Zonyl®-RP solution

Figure S3MRM chromatograms of detected diPAPs in ECO popcorn (food sample 1, prepared)

Figure S4Potential sources of PAPs and PFCAs in food samples

S1

Table S1 List of identified mono-, di-, and triPAPs and their UPLC/MS/MS parameters

RRta / Precursor ion (m/z) / Product
ion 1 (m/z) / Product
ion 2 (m/z) / Cone voltage (V) / Collision energy (eV)
monoPAPs
6:2 / 0.36 / 443 / 97 / 10 / 18
8:2 / 0.58 / 543 / 97 / 10 / 24
10:2 / 0.76 / 643 / 97 / 14 / 20
12:2 / 0.91 / 743 / 97 / 10 / 20
diPAPs
6:2/6:2 / 1 / 789 / 97 / 443 / 50 / 34
6:2/8:2 / 1.18 / 889 / 97 / 443 / 50 / 34
8:2/8:2 / 1.39 / 989 / 97 / 543 / 50 / 36
6:2/10:2 / 1.41 / 989 / 97 / 443 / 50 / 36
8:2/10:2 / 1.62 / 1089 / 97 / 543 / 50 / 34
6:2/12:2 / 1.65 / 1089 / 97 / 443 / 50 / 34
10:2/10:2b / 1.79 / 1189 / 97 / 643 / 50 / 34
8:2/12:2b / 1189 / 97 / 543 / 50 / 34
6:2/14:2 / 1.80 / 1189 / 97 / 443 / 50 / 34
10:2/12:2c / 1.88 / 1289 / 97 / 643 / 50 / 34
8:2/14:2c / 1289 / 97 / 543 / 50 / 34
6:2/16:2 / 1.89 / 1289 / 97 / 443 / 50 / 34
12:2/12:2d / 1.98 / 1389 / 97 / 743 / 50 / 34
10:2/14:2d / 1389 / 97 / 643 / 50 / 34
8:2/16:2d / 1389 / 97 / 543 / 50 / 34
6:2/18:2d / 1389 / 97 / 443 / 50 / 34
triPAPs
6:2/6:2/6:2 / 1.91 / 789 / 97 / 443 / 50 / 34
6:2/6:2/8:2 / 1.97 / 789/889 / 97 / 443 / 50 / 34
6:2/8:2/8:2e / 2.02 / 889/989 / 97 / 443/543 / 50 / 34
6:2/6:2/10:2e / 789/989 / 97 / 443 / 50 / 34
8:2/8:2/8:2f / 2.06 / 989 / 97 / 543 / 50 / 34
6:2/8:2/10:2f / 889/989 / 97 / 443 / 50 / 34
6:2/6:2/12:2f / 789/1089 / 97 / 443 / 50 / 34

a Relative retention time (normalized to the retention time of 6:2/6:2 diPAP). Retention times of compounds highlighted in bold were confirmed with authentic standards, other compounds were identified in Zonyl®-RP

b,c,d,e,fCoeluting peaks

Table S2 Matrix effects and recoveries of mono-and diPAPs spiked to a fish homogenate

Compound / % Matrix effecta
(n=1) / % Recoveryb
(n=1)
monoPAPs
6:2 / 80 / 78
8:2 / 106 / 83
10:2 / 226 / 67
diPAPs
6:2/6:2 / 559 / 67
6:2/8:2 / 278 / 70
6:2/10:2 / 343 / 97
8:2/8:2 / 808 / 75
6:2/12:2 / 251 / 85
8:2/10:2 / 505 / 82
6:2/14:2 / 222 / 76
8:2/12:2 / 321 / 58
10:2/10:2 / 190 / 67
6:2/16:2 / 264 / 81
8:2/14:2 / 208 / 49
10:2/12:2 / 228 / 26
8:2/16:2 / 200 / 71

a %Matrix effect = (peak area spiked fish post-extraction) * 100/(peak area spiked solvent)

b %Recovery = (peak area spiked fish pre-extraction) * 100/(peak area spiked fish post-extraction)

Note: triPAPs were below detection limit in this experiment

S1

Table S3 Concentrations of 6:2/6:2 and 8:2/8:2 diPAPs and corresponding MLOQs in food samples

Food sample / 6:2/6:2
(pg/g) / MLOQ
(S/N 10, pg/g) / 8:2/8:2
(pg/g) / MLOQ
(S/N 10, pg/g)
1 / Eco popcorn / Unprepared / 3.7 / 0.39
Prepared / 7.3 / 0.34 / 3.6 / 1.5
2 / Popcorn original / Unprepared / 1.4 / 0.24
Prepared / 13.0 / 0.22
3 / Popcorn extra butter / Unprepared / 2.1 / 0.62
Prepared / 5.3 / 0.08
4 / Thai food / Unprepared / 1.5 / 0.48
Prepared / 1.5 / 0.43
5 / Gorbys pirogue / Unprepared / 2.5 / 0.14
Prepared / 0.9 / 0.24
6 / Grandiosa pizza / Unprepared / 3.8 / 0.13 / 1.9 / 0.19
Prepared / 4.9 / 0.75
7 / Billy’s pan pizza / Unprepared / 3.6 / 0.28 / 2.2 / 0.53
Prepared / 1.9 / 0.29
8 / Apple pie / Unprepared / 1.8 / 0.18
Prepared / 3.0 / 0.28
9 / Oatmeal
10 / Potato chips / 6.4 / 0.18 / 3.6 / 0.59
11 / Muffin / 2.6 / 0.23
12 / QP burger / 2.1 / 0.14 / 1.0 / 0.23
13 / Cheese burger / 5.7 / 0.04 / 2.7 / 0.17
14 / Fries / 2.2 / 0.14

Table S4 Recoveries (including matrix effects)aof 13C-labeled mono- and diPAPs and M8PFOA in food analysis

Sample # / Food sample / % Recovery (n=1)
13C-6:2 / 13C-8:2 / 13C-6:2/6:2 / 13C-8:2/8:2 / M8PFOA
1 / Eco popcorn / Unprepared / 22 / 25 / 305 / 55 / 66
Prepared / 34 / 33 / 248 / 102 / 32
2 / Popcorn original / Unprepared / 0.8 / 0.8 / 133 / 16 / 67
Prepared / 1.7 / 1.6 / 199 / 22 / 53
3 / Popcorn extra butter / Unprepared / 0 / 0 / 79 / 14 / 61
Prepared / 0.3 / 0.5 / 204 / 19 / 91
4 / Thai food / Unprepared / 45 / 44 / 169 / 27 / 68
Prepared / 50 / 39 / 164 / 33 / 39
5 / Gorbys pirogue / Unprepared / 42 / 41 / 271 / 60 / 56
Prepared / 34 / 26 / 140 / 39 / 29
6 / Grandiosa pizza / Unprepared / 35 / 34 / 234 / 86 / 55
Prepared / 25 / 18 / 52 / 30 / 27
7 / Billy’s pan pizza / Unprepared / 41 / 35 / 263 / 54 / 80
Prepared / 23 / 12 / 72 / 35 / 10
8 / Apple pie / Unprepared / 41 / 39 / 140 / 32 / 66
Prepared / 30 / 19 / 39 / 28 / 55
9 / Oatmeal / 48 / 34 / 23 / 8 / 44
10 / Potato chips / 33 / 39 / 230 / 121 / 26
11 / Muffin / 12 / 9 / 143 / 26 / 39
12 / QP burger / 27 / 23 / 236 / 96 / 47
13 / Cheese burger / 22 / 14 / 175 / 87 / 73
14 / Fries / 23 / 15 / 151 / 32 / 28

a% Recovery = (peak area spiked pre-extraction) * 100/(peak area spiked solvent)

S1

Table S5Relative abundance of detectable mono-, di-, and triPAPs in food packaging materials (based on peak area compared to 6:2/6:2 diPAP)a

Sample #b / monoPAP / diPAP / triPAP
6:2 / 8:2 / 10:2 / 6:2/6:2 / 6:2/8:2 / 8:2/8:2 / 6:2/10:2 / 8:2/10:2 / 6:2/12:2 / 10:2/10:2 / 6:2/14:2 / 10:2/12:2 / 6:2/6:2/6:2 / 6:2/6:2/8:2 / 6:2/8:2/8:2 / 8:2/8:2/8:2
8:2/12:2 / 8:2/14:2 / 6:2/6:2/10:2 / 6:2/8:2/10:2
6:2/6:2/12:2
Zonyl®-RP / 25 / 21 / 12 / 100 / 134 / 43 / 49 / 39 / 20 / 28 / 10 / 16 / 2 / 5 / 5 / 4
1 / 0.05 / 0.04 / 0.01 / 100 / 59 / 10 / 14 / 9 / 5 / 5 / 2 / 2 / 1 / 1 / 0.8 / 0.6
2 / 100 / 38 / 8 / 9 / 9
3 / 100 / 23 / 6 / 5 / 4 / 2
4 / 100 / 12 / 10 / 4 / 7 / 0.9 / 3 / 0.5 / 9
5 / 0.4 / 0.2 / 100 / 46 / 6 / 3 / 2 / 0.3
6 / 2 / 100 / 195 / 14 / 13 / 5 / 1
7 / 0.5 / 100 / 64 / 6 / 4 / 2
8 / 3 / 100 / 30 / 38 / 11 / 22 / 3 / 15 / 1
9 / 7 / 100 / 70 / 25 / 17 / 26 / 5 / 10
10 / 136 / 100 / 29
11 / 100 / 35 / 15 / 17 / 8 / 2 / 4
12 / 100 / 120 / 26 / 32 / 23 / 11 / 14 / 3 / 6
13 / 100 / 12 / 9
14 / 100 / 92 / 12 / 16 / 9 / 4 / 5 / 1 / 2 / 0.6 / 0.6

aNo matrix effect or recovery corrections were made

b See Table 1 for identification of food samples

Table S6Relative abundance of detectable diPAPs in food samples(based on peak area compared to 6:2/6:2 diPAP)a

Food sample / 6:2/6:2 / 6:2/8:2 / 8:2/8:2 / 6:2/10:2 / 8:2/10:2 / 6:2/12:2 / 10:2/10:2 / 6:2/14:2
8:2/12:2
1 / Eco popcorn / Unprepared / 100 / 18
Prepared / 100 / 103 / 12 / 18 / 21 / 5 / 11 / 3
2 / Popcorn original / Unprepared / 100 / 21
Prepared / 100 / 30
3 / Popcorn extra butter / Unprepared / 100 / 22
Prepared / 100 / 27
4 / Thai food / Unprepared / 100 / 29
Prepared / 100 / 28
5 / Gorbys pirogue / Unprepared / 100 / 69
Prepared / 100
6 / Grandiosa pizza / Unprepared / 100 / 94 / 11 / 16 / 17
Prepared / 100 / 99
7 / Billy’s pan pizza / Unprepared / 100 / 64 / 8 / 7
Prepared / 100 / 72
8 / Apple pie / Unprepared / 100 / 30
Prepared / 100 / 172
9 / Oatmealb
10 / Potato chips / 100 / 103 / 19 / 15 / 13 / 8 / 14 / 3
11 / Muffin / 100 / 22
12 / QP burger / 100 / 52 / 12 / 8
13 / Cheese burger / 100 / 50 / 15 / 7
14 / Fries / 100 / 42

aNo matrix effect or recovery corrections were made

b No PAPs were detected in the oatmeal food sample

Table S7Detection of PFCAs in food packaging materialsa

Sample #b / PFHxA / PFHpA / PFOA / PFNA / PFDA / PFUnDA / PFDoDA / PFTrDA / PFTeDA / PFPeDA
1 / X / X / X / X / X / X / X / X / X / X
2 / X / X / X / X / X / X / X / X / X
3 / X / X / X / X / X / X / X / X
4 / X / X
5
6 / X
7
8 / X
9 / X / X / X
10 / X
11 / X
12 / X / X / X / X / X
13 / X
14 / X / X / X / X

aPFBA andPFPeA were not detected in any sample

b See Table 1 foridentification of foodpackaging material

S1

Figure S1 Chemical structures of 6:2 monoPAP, 6:2/6:2 diPAP, and 6:2/6:2/6:2 triPAP

Figure S2 MRM chromatograms of multiple product ions for coeluting 10:2/10:2, 8:2/12:2, and 6:2/14:2 diPAPs in a Zonyl®-RP solution

Figure S3MRM chromatograms of detected diPAPs in ECO popcorn (food sample 1, prepared)

Figure S4Potential sources of PAPs and PFCAs in food samples

S1