Supporting Dataset
Mathematical Modeling Matlab Codefor Fig. S5.
p.kex = 2.5e-5;
p.kt = 2.5e-5;
p.kmt = 1e-3;
p.VtVb= 0.05;
p.ka = 2336.4*0.6;
p.kma = p.ka*(381.4e-9);
p.kb = 2336.4*2;
p.kmb = p.kb*(31.3e-9);
p.VR = 100;
% p.kint= 0; %2.5e-6;
p.knon= 3e-5;
p.kmnon= 3e-6;
p.RTaC0 = 1e-8;
p.RTbC0 = 18*p.RTaC0;
p.RNaC0 = 0;
p.RNbC0 = 19*p.RTaC0;
p.RTaM0 = 1e-8;
p.RTbM0 = 18*p.RTaC0;
p.RNaM0 = 24*p.RTaC0;
p.RNbM0 = 0;
p.dose = 2.5e-9;
p.Vb = 0.5;
p.tf=48*3600;
p.CBC = p.dose/p.Vb;
p.CTuC = 0;
p.CTaC = 0;
p.CTbC = 0;
p.CTabC= 0;
p.CTintC=0;
p.CTnonC=0;
p.CNuC = 0;
p.CNaC = 0;
p.CNbC = 0;
p.CNabC= 0;
p.CNintC=0;
p.CNnonC=0;
p.CBM = p.dose/p.Vb;
p.CTuM = 0;
p.CTaM = 0;
p.CTbM = 0;
p.CTabM= 0;
p.CTintM=0;
p.CTnonM=0;
p.CNuM = 0;
p.CNaM = 0;
p.CNbM = 0;
p.CNabM= 0;
p.CNintM=0;
p.CNnonM=0;
y0=[p.CBC p.CTuC p.CTaC p.CTbC p.CTabC p.CTnonC p.CNuC p.CNaC p.CNbC p.CNabC p.CNnonC p.CBM p.CTuM p.CTaM p.CTbM p.CTabM p.CTnonM p.CNuM p.CNaM p.CNbM p.CNabM p.CNnonM];
%y0=[p.CB p.CTu p.CTa p.CTb p.CTab p.CTint p.CTnon p.CNu p.CNa p.CNb p.CNab p.CNint p.CNnon];
options = odeset('AbsTol', 1e-10, 'RelTol', 1e-7);
[t y] = ode15s(@modelhighrhs, [0 p.tf], y0, options, p);
CCKdata = [0 0 0; 14400 7.13 6.17; 86400 3.59 3.47; 172800 4.07 3.96];
MC1Rdata = [0 0 0; 14400 8.09 1.1; 86400 5.1 1.4; 172800 3.91 0.83];
TtotalC = y(:,2)+y(:,3)+y(:,4)+y(:,5)+y(:,6); %+y(:,7);
NtotalC = y(:,7)+y(:,8)+y(:,9)+y(:,10)+y(:,11); %+y(:,13);
RTaC = p.RTaC0 - y(:,3) - y(:,5);
RTbC = p.RTbC0 - y(:,4) - y(:,5);
TtotalM = y(:,13)+y(:,14)+y(:,15)+y(:,16)+y(:,17); %+y(:,7);
NtotalM = y(:,18)+y(:,19)+y(:,20)+y(:,21)+y(:,22); %+y(:,13);
RTaM = p.RTaM0 - y(:,14) - y(:,16);
RTbM = p.RTbM0 - y(:,15) - y(:,16);
SpecC = TtotalC ./ NtotalC;
SpecM = TtotalM ./ NtotalM;
figure(1);
subplot(2,2,1), plot (CCKdata(:,1), CCKdata(:,2))
title('Data: CCK tumor')
subplot(2,2,2), plot (t, TtotalC)
title('Model: CCK tumor')
subplot(2,2,3), plot (CCKdata(:,1), CCKdata(:,3))
title('Data: CCK control')
subplot(2,2,4), plot (t, NtotalC)
title('Model: CCK control');
figure(2)
subplot(2,2,1), plot (MC1Rdata(:,1), MC1Rdata(:,2))
title('Data: MC1R tumor')
subplot(2,2,2), plot (t, TtotalM)
title('Model: MC1R tumor')
subplot(2,2,3), plot (MC1Rdata(:,1), MC1Rdata(:,3))
title('Data: MC1R control')
subplot(2,2,4), plot (t, NtotalM)
title('Model: MC1R control');
figure(3);
subplot(2,2,1), plot (t, y(:,2))
title('Model: CTuC')
subplot(2,2,2), plot (t, y(:,3))
title('Model: CTaC')
subplot(2,2,3), plot (t, y(:,4))
title('Model: CTbC')
subplot(2,2,4), plot (t, y(:,5))
title('Model: CTabC');
figure(4);
subplot(2,2,1), plot (t, y(:,7))
title('Model: CNuC')
subplot(2,2,2), plot (t, y(:,8))
title('Model: CNaC')
subplot(2,2,3), plot (t, y(:,9))
title('Model: CNbC')
subplot(2,2,4), plot (t, y(:,10))
title('Model: CNabC');
figure(5);
subplot(2,2,1), plot (t, y(:,13))
title('Model: CTuC')
subplot(2,2,2), plot (t, y(:,14))
title('Model: CTaC')
subplot(2,2,3), plot (t, y(:,15))
title('Model: CTbC')
subplot(2,2,4), plot (t, y(:,16))
title('Model: CTabC');
figure(6);
subplot(2,2,1), plot (t, y(:,18))
title('Model: CNuC')
subplot(2,2,2), plot (t, y(:,19))
title('Model: CNaC')
subplot(2,2,3), plot (t, y(:,20))
title('Model: CNbC')
subplot(2,2,4), plot (t, y(:,21))
title('Model: CNabC');
figure(5);
subplot(2,2,1), plot (t, RTaC)
title('Model: RTaC')
subplot(2,2,2), plot (t, RTbC)
title('Model: RTbC')
subplot(2,2,3), plot (t, RTaM)
title('Model: RTaM')
subplot(2,2,4), plot (t, RTbM)
title('Model: RTbM');
% plot (t, y(:,1));
% xlabel ('Time'); ylabel ('Blood conc'); title ('Model CCK');
%
% figure(2);
% plot (t, Ttotal);
% xlabel ('Time'); ylabel ('Ttotal CCK model'); title ('Model CCK');
%
% figure(3);
% plot (CCKdata(:,1), CCKdata(:,3));
% xlabel ('Time'); ylabel ('CCK data control'); title ('Data CCK');
%
% figure(4);
% plot (t, Ntotal);
% xlabel ('Time'); ylabel ('Ntotal CCK model'); title ('Model CCK');
%
% figure(5);
% plot (t, y(:,7));
% xlabel ('Time'); ylabel ('Ntu'); title ('Concentration in Control');
%
% figure(6);
% plot (t, y(:,3));
% xlabel ('Time'); ylabel ('Ntotal'); title ('Concentration in Control');
% figure(7);
% plot (t, y(:,4));
% xlabel ('Time'); ylabel ('Ntotal'); title ('Concentration in Control');
% figure(8);
% plot (t, y(:,5));
% xlabel ('Time'); ylabel ('Ntotal'); title ('Concentration in Control');
% figure(8);
% plot (t, y(:,7));
% xlabel ('Time'); ylabel ('Ntotal'); title ('Concentration in Control');
% figure(4);
% plot (t, Spec);
% xlabel ('Time'); ylabel ('Specificity'); title ('Specificity');
function yp = modellowrhs (t, y, p);
CBC = y(1);
CTuC = y(2);
CTaC = y(3);
CTbC = y(4);
CTabC= y(5);
% CTint=y(6);
CTnonC=y(6);
CNuC = y(7);
CNaC = y(8);
CNbC = y(9);
CNabC= y(10);
% CNint=y(12);
CNnonC=y(11);
CBM = y(12);
CTuM = y(13);
CTaM = y(14);
CTbM = y(15);
CTabM= y(16);
% CTint=y(6);
CTnonM=y(17);
CNuM = y(18);
CNaM = y(19);
CNbM = y(20);
CNabM= y(21);
% CNint=y(12);
CNnonM=y(22);
yp=y;
RTaC = p.RTaC0 - CTaC - CTabC;
RTbC = p.RTbC0 - CTbC - CTabC;
RNaC = p.RNaC0 - CNaC - CNabC;
RNbC = p.RNbC0 - CNbC - CNabC;
RTaM = p.RTaM0 - CTaM - CTabM;
RTbM = p.RTbM0 - CTbM - CTabM;
RNaM = p.RNaM0 - CNaM - CNabM;
RNbM = p.RNbM0 - CNbM - CNabM;
%dCB/dt
yp(1) = -p.kex*CBC - 2*p.kt*CBC + p.kmt*CTuC*p.VtVb + p.kmt*CNuC*p.VtVb;
%
% %dCTu/dt
yp(2) = p.kt*CBC*(1/p.VtVb) - p.kmt*CTuC - p.ka*CTuC*RTaC + p.kma*CTaC - p.kb*CTuC*RTbC + p.kmb*CTbC;
%
% %dCTa/dt
yp(3) = p.ka*CTuC*RTaC - p.kma*CTaC - p.kb*CTaC*RTbC*p.VR + p.kmb*CTabC; % - p.kint*CTa;
%
% %dCTb/dt
yp(4) = p.kb*CTuC*RTbC - p.kmb*CTbC - p.ka*CTbC*RTaC*p.VR + p.kma*CTabC; % - p.kint*CTb;
%
% %dCTab/dt
yp(5) = p.kb*CTaC*RTbC*p.VR - p.kmb*CTabC + p.ka*CTbC*RTaC*p.VR - p.kma*CTabC; % - p.kint*CTab;
%
% %dCTint/dt
%yp(6) = p.kint*(CTa + CTb + CTab);
%dCTnon/dt
yp(6) = p.knon*CTuC - p.kmnon*CTnonC;
%
% %dCNu/dt
yp(7) = p.kt*CBC*(1/p.VtVb) - p.kmt*CNuC - p.ka*CNuC*RNaC + p.kma*CNaC - p.kb*CNuC*RNbC + p.kmb*CNbC;
%
% %dCNa/dt
yp(8) = p.ka*CNuC*RTaC - p.kma*CNaC - p.kb*CNaC*RNbC*p.VR + p.kmb*CNabC; % - p.kint*CNa;
%
% %dCNb/dt
yp(9) = p.kb*CNuC*RNbC - p.kmb*CNbC - p.ka*CNbC*RNaC*p.VR + p.kma*CNabC; % - p.kint*CNb;
%
% %dCNab/dt
yp(10) = p.kb*CNaC*RNbC*p.VR - p.kmb*CNabC + p.ka*CNbC*RNaC*p.VR - p.kma*CNabC; % - p.kint*CNab;
%
% %dCNint/dt
%yp(12) = p.kint*(CNa + CNb + CNab);
%dCNnon/dt
yp(11) = p.knon*CNuC - p.kmnon*CNnonC;
%MC1R model...
%dCB/dt
yp(12) = -p.kex*CBM - 2*p.kt*CBM + p.kmt*CTuM*p.VtVb + p.kmt*CNuM*p.VtVb;
%
% %dCTu/dt
yp(13) = p.kt*CBM*(1/p.VtVb) - p.kmt*CTuM - p.ka*CTuM*RTaM + p.kma*CTaM - p.kb*CTuM*RTbM + p.kmb*CTbM;
%
% %dCTa/dt
yp(14) = p.ka*CTuM*RTaM - p.kma*CTaM - p.kb*CTaM*RTbM*p.VR + p.kmb*CTabM; % - p.kint*CTa;
%
% %dCTb/dt
yp(15) = p.kb*CTuM*RTbM - p.kmb*CTbM - p.ka*CTbM*RTaM*p.VR + p.kma*CTabM; % - p.kint*CTb;
%
% %dCTab/dt
yp(16) = p.kb*CTaM*RTbM*p.VR - p.kmb*CTabM + p.ka*CTbM*RTaM*p.VR - p.kma*CTabM; % - p.kint*CTab;
%
% %dCTint/dt
%yp(6) = p.kint*(CTa + CTb + CTab);
%dCTnon/dt
yp(17) = p.knon*CTuM - p.kmnon*CTnonM;
%
% %dCNu/dt
yp(18) = p.kt*CBM*(1/p.VtVb) - p.kmt*CNuM - p.ka*CNuM*RNaM + p.kma*CNaM - p.kb*CNuM*RNbM + p.kmb*CNbM;
%
% %dCNa/dt
yp(19) = p.ka*CNuM*RTaM - p.kma*CNaM - p.kb*CNaM*RNbM*p.VR + p.kmb*CNabM; % - p.kint*CNa;
%
% %dCNb/dt
yp(20) = p.kb*CNuM*RNbM - p.kmb*CNbM - p.ka*CNbM*RNaM*p.VR + p.kma*CNabM; % - p.kint*CNb;
%
% %dCNab/dt
yp(21) = p.kb*CNaM*RNbM*p.VR - p.kmb*CNabM + p.ka*CNbM*RNaM*p.VR - p.kma*CNabM; % - p.kint*CNab;
%
% %dCNint/dt
%yp(12) = p.kint*(CNa + CNb + CNab);
%dCNnon/dt
yp(22) = p.knon*CNuM - p.kmnon*CNnonM;
1