ECE421POWER SYSTEM ANALYSIS

Homework #7

6.12a / 6.12b / 6.12c / 6.13a / 6.13b / 7.6 / 7.9a / 7.9b / 7.9c / 7.9M / 7.11 / 7.11M / total
ECE421 / 10' / 10' / 5' / 10' / 5' / 10 / 15' / 15' / 15' / 5’ / 15' / 5’ / 120

6.12(a)

Bus admittance matrix,

6.12(b)

Determine Jacobian matrix,

Initial condition,

First iteration,

Second iteration,

6.12(c)

Run the following code,

%Problem 6.12(c)

clear

basemva = 100;

accuracy = 0.00001;

accel = 1.0;

maxiter = 100;

%bus data

% Bus Bus Voltage Angle -Load------Generator--- Injected

% No code Mag Degree MW MVAR MW MVAR Qmin Qmax MVAR

busdata=[1 1 1.0 0.0 0.0 0.0 0.0 0.0 0 0 0

2 2 1.05 0.0 0 0 400 0.0 0 600 0

3 0 1.0 0.0 500 400 0.0 0.0 0 0 0];

%line data

% Bus Bus R X 1/2 B Line code

% nl nr pu pu pu

linedata=[1 2 0.0 0.025 0.0 1

1 3 0.0 0.05 0.0 1

2 3 0.0 0.05 0.0 1];

lfybus

lfnewton

busout

The result agrees with calculation,

> ECE599HW8_6_12_c

Power Flow Solution by Newton-Raphson Method

Maximum Power Mismatch = 6.65779e-12

No. of Iterations = 5

Bus Voltage Angle ------Load------Generation--- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.000 0.000 0.000 0.000 100.000 4.723 0.000

2 1.050 1.611 0.000 0.000 400.000 537.059 0.000

3 0.905 -6.919 500.000 400.000 0.000 0.000 0.000

Total 500.000 400.000 500.000 541.782 0.000

6.13(a)

First iteration,

The power residuals,

Second iteration,

6.13(b)

Run the following code,

%Problem 6.13(b)

clear

basemva = 100;

accuracy = 0.00001;

accel = 1.0;

maxiter = 100;

%bus data

% Bus Bus Voltage Angle -Load------Generator--- Injected

% No code Mag Degree MW MVAR MW MVAR Qmin Qmax MVAR

busdata=[1 1 1.0 0.0 0.0 0.0 0.0 0.0 0 0 0

2 2 1.05 0.0 0 0 400 0.0 0 600 0

3 0 1.0 0.0 500 400 0.0 0.0 0 0 0];

%line data

% Bus Bus R X 1/2 B Line code

% nl nr pu pu pu

linedata=[1 2 0.0 0.025 0.0 1

1 3 0.0 0.05 0.0 1

2 3 0.0 0.05 0.0 1];

lfybus

decouple

busout

The result agrees with calculation,

> ECE599HW8_6_13_b

Power Flow Solution by Fast Decoupled Method

Maximum Power Mismatch = 2.25093e-06

No. of Iterations = 10

Bus Voltage Angle ------Load------Generation--- Injected

No. Mag. Degree MW Mvar MW Mvar Mvar

1 1.000 0.000 0.000 0.000 100.000 4.723 0.000

2 1.050 1.611 0.000 0.000 400.000 537.059 0.000

3 0.905 -6.919 500.000 400.000 0.000 0.000 0.000

Total 500.000 400.000 500.000 541.782 0.000

7.6

7.9(a)

For loading condition

The optimal dispatch is,

For loading condition

The optimal dispatch is,

For loading condition

The optimal dispatch is,

7.9(b)

Start with initial value

For loading condition, first iteration,

Second iteration,

The equality constraint is met in two iterations.

For loading condition, first iteration,

Second iteration,

The equality constraint is met in two iterations.

For loading condition, first iteration,

Second iteration,

The equality constraint is met in two iterations.

7.9(c)

For loading condition, when 3 generator share load equally,

For the optimal dispatch,

The saving is

For loading condition, when 3 generator share load equally,

The saving is

For loading condition, when 3 generator share load equally,

The saving is

Run the following code to check the result,

%ECE521 Problem 7.9

cost = [350 7.2 0.004

500 7.3 0.0025

600 6.74 0.003];

disp('(i) Pdt = 450 MW')

Pdt = 450;

dispatch

gencost

disp('(ii) Pdt = 745 MW')

Pdt = 745;

dispatch

gencost

disp('(iii) Pdt = 1335 MW')

Pdt = 1335;

dispatch

gencost

The results agree with calculation,

> ECE599HW8_7_9

(i) Pdt = 450 MW

Incremental cost of delivered power (system lambda) = 8.000000 $/MWh

Optimal Dispatch of Generation:

100.0000

140.0000

210.0000

Total generation cost = 4828.70 $/h

(ii) Pdt = 745 MW

Incremental cost of delivered power (system lambda) = 8.600000 $/MWh

Optimal Dispatch of Generation:

175.0000

260.0000

310.0000

Total generation cost = 7277.20 $/h

(iii) Pdt = 1335 MW

Incremental cost of delivered power (system lambda) = 9.800000 $/MWh

Optimal Dispatch of Generation:

325.0000

500.0000

510.0000

7.11

The real power loss,

First iteration,the initial condition ,

The real power loss,

The error,

Second iteration,

The real power loss,

The error,

Run the following code,

%Problem 7.11

cost = [320 6.2 0.004

200 6.0 0.003];

mwlimits =[ 50 250

50 350];

Pdt = 412.35;

B=[0.0125 0

0 0.00625]

basemva=100;

lambda = 7.0;

dispatch

gencost

The result is,

> ECE599HW8_7_11

B =0.0125 0

0 0.0063

Incremental cost of delivered power (system lambda) = 7.803862 $/MWh

Optimal Dispatch of Generation:

161.1765

258.6003

Absolute value of the slack bus real power mismatch, dpslack = 0.6118 pu

Total generation cost = 8193.13 $/h

So, the optimal dispatch finally converge to,