DOM PMT HV Base Board Functional Test Setup and Procedure Page 19 of 19
Document # 9400-0028-TEST Rev: B
REVISIONSLTR. / ECN / DESCRIPTION / DATE / APPROVED
A / NA / Original release / May 9, 2005
B / Improve the HiPot test (Sec 5) with a new tester.
Remove the network analyzer test (Sec 4) / March 20, 2006
CONTROLLED DIST. LIST
1 / 16 / ANTARCTIC ASTRONOMY AND ASTROPHYSICS
2 / 17 / RESEARCH INSTITUTE
3 / 18 / THE UNIVERSITY OF WISCONSIN - MADISON, WISCONSIN
4 / 19 / TITLE
5 / 20 / ICECUBE
6 / 21 / DOM PMT HIGH VOLTAGE POWER SUPPLY BASE BOARD
7 / 22 / PRODUCTION TEST REQUIREMENTS AND PROCEDURE
8 / 23 / ORIGINATOR / DATE / ENGINEER / DATE / CHECKER / DATE
9 / 24
10 / 25 / LEVEL 2/LEAD / DATE / PRODUCT ASSURANCE / DATE / PROJECT APPROVAL / DATE
11 / 26
12 / 27 / FILENAME / PROJECT NO.
13 / 28 / 9400-0028-TEST.060301.pdf / 9000
14 / 29 / DRAWING NO. / SCALE / SIZE / SHEET
15 / 30 / 9400-0028-TEST / NA / A / Page 1 of 18
Contents
Contents 2
1. General 3
1.1 Scope 3
1.2 Purpose of the Tests 3
1.3 Responsibility 3
1.4 Applicable Documents 3
2. The Flying Probe Test 5
2.1 Objective 5
2.2 Probe Access Points 5
2.3 Test Specification 6
3. Environmental Stress and Screening (ESS) 8
3.1 Minimum Requirements 8
4. RF Measurement with a Network Analyzer 9
5. High Voltage Test with the HiPot Tester 10
5.1 Objective 10
5.2 Setup and Test Conditions 10
Appendix A Flying Probe Tolerance Data 11
Appendix B The RF Measurement Software 12
Appendix C HiPot Tester Specification 16
Appendix D. RF Measurement with a Network Analyzer 17
1. General
1.1 Scope
The intended user of this document is the vendor of the DOM PMT High-Voltage Supply Base Board (“HV Base Board”). The tests outlined in this document are required and must be executed on each of the HV Base Board prior to shipping to IceCube.
The focus of this document is the requirements associated with the tests, and not the complete description of test implementation. Description of the procedures is minimal in this document. It is up to the responsible party to define the tests in a manner suitable for execution (See 1.3 Responsibility).
1.2 Purpose of the Tests
The required tests with respect to the HV Base Board manufacturing process flow is as shown in Figure 1.
The Flying Probe Test is conducted before and after the ESS in order to verify the correct installation and electrical integrity of the components.
Environmental Stress Screening (ESS) is performed in conjunction with Flying Probe Tests to screen early-life failures (infant mortality).
The Hi-Pot Test is used to screen out faulty high-voltage components (capacitors in particular).
1.3 Responsibility
- Vender shall define the Flying Probe test within the framework outlined in this document.
- Vender shall define the Environmental Stress Screening within the framework outlined in this document in collaboration with IceCube. The ESS protocols require IceCube’s approval.
- IceCube is responsible for defining and implementing the RF Impedance Test.
- IceCube is responsible for defining the Hi-Pot test.
- Vender shall disposition failed units according to its own Non-Conforming Material (NCM) system.
1.4 Applicable Documents
- DOM PMT High Voltage Power Supply Base Board Specification Control Drawing, 9400-0028-SCD
- PMT HV Base Board Schematic Diagram, 9400-0028-SCH.040517.pdf
- PMT HV Base Board Parts List, 9400-0028-PRT.041110.pdf
- PMT HV Base Board Assembly Drawing, 9400-0028-DWG.050202.pdf
- PMT HV Base Board Conformal Coating Requirements, 9400-0028-DWG3.050201.pdf
- Unidata file for HV Base Board Rev C (base_revc.uni, 5/28/2004, 6:47PM) (used for programming the Flying Probe instrument).
Figure 1 HV Base Board Process Flow
2. The Flying Probe Test
2.1 Objective
By probing only the accessible pads on the board:
o Verify the presence of correct components at correct locations according to the board design documents.
o Detect open and shorts in the circuit.
2.2 Probe Access Points
The pads accessible for the probes are shown in Table 1 and Figure 2 . All other pads are conformally coated and thus electrically insulated.
To avoid undesirable indentation (or asperity which may become a corona discharge point) on the solder pads, only the PMT mounting pads and two additional pads, HV+ and HV-, where the HV cable from the HV Generator are attached, are allowed to be probed.
Table 1 Nodes accessible for the Flying Probe Test
Node name / Silkscreen markingPMT_K / K
PMT_DY1 / D1
PMT_F2 / F2
PMT_F1 / F1
PMT_F3 / F3
PMT_DY2 / D2
PMT_DY3 / D3
PMT_DY4 / D4
PMT_DY5 / D5
PMT_DY6 / D6
PMT_DY7 / D7
PMT_DY8 / D8
PMT_DY9 / D9
PMT_DY10 / D10
PMT_P / P
HV+ / HV+
HV- / HV-
Figure 2 Probe-accessible pads are marked with a red square
2.3 Test Specification
Table 2 Flying Probe Test Pass/Fail Criteria
Pilot Tester Reading (MW)Node 1 / Node 2 / Parameter / Nominal*(MW) / Min / Max
PMT_K / HV- / R17 (FB1) / 0.1 / 0.098 / 0.102
PMT_DY1 / PMT_F2 / (continuity) / 0 / 0 / 0
PMT_F2 / PMT_F1 / R2 / 1.87 / 1.8 / 1.9
PMT_F1 / PMT_F3 / (continuity) / 0 / 0 / 0
PMT_F3 / PMT_DY2 / R3A + R3B / 10.46 / 13.3 / 13.8
PMT_DY2 / PMT_DY3 / R4A + R4B / 15.36 / 19.3 / 20.1
PMT_DY3 / PMT_DY4 / R5A + R5B / 10.22 / 13.0 / 13.5
PMT_DY4 / PMT_DY5 / R6//C1 / 5.11 / 6.8 / 7.1
PMT_DY5 / PMT_DY6 / R7//C2 / 3.09 / 4.3 / 4.5
PMT_DY6 / PMT_DY7 / R8//C3 / 3.74 / 5.1 / 5.3
PMT_DY7 / PMT_DY8 / R9//C4 + R13 / 4.64 / 6.2 / 6.5
PMT_DY8 / PMT_DY9 / R10//C5 + R13 + R14 / 6.81 / 8.8 / 9.2
PMT_DY9 / PMT_DY10 / (R11A + R11B)//C6 + R14 + R15 / 9.28 / 11.9 / 12.3
PMT_DY10 / PMT_P / R12//C7 + R15 + R16 / 7.50 / 9.6 / 10.1
*Nominal DC resistance
The pass/fail criteria for the Flying Probe Tester reading between pairs of nodes are shown in the table above.
Note that the table is created based on the actual measurement of a test article on a given Plying Probe Tester, and is applicable only to the tests performed at EMS in CY2004 and 2005. Although given in mega-ohms, the Pilot Tester readings are not to be interpreted as the measurement of the component values.
3. Environmental Stress and Screening (ESS)
3.1 Minimum Requirements
The following requirements apply to the HV Base Board assembly.
o Minimum of 5 thermal cycles, where one thermal cycle is defined to be a temperature excursion of +20 ºC→ −40 ºC →+20 ºC.
o +20 ºC to −40 ºC temperature range.
o Ramp rate of between 2 and 5 ºC per minute.
o Dwell time of a minimum of 60 minutes at each temperature extreme.
4. RF Measurement with a Network Analyzer
The Network Analyzer test is deleted in Rev B of this document. See Appendix D.
5. High Voltage Test with the HiPot Tester
5.1 Objective
Test the integrity of the capacitors under a high-voltage load.
5.2 Setup and Test Conditions
In this test, seven most critical node pairs have been selected.
The HV Base Boards are tested in the panelized form on a bed-of-nails fixture equipped with a rotary switch that allows the operator to sequentially execute the preset tests.
The following test parameters assume the use of an Associated Research Model 7710 Hypot Max tester (12kV max, 0.1 mA sensitivity).
The test voltages correspond to the situation where a total voltage of 2.5kV is applied across HV+ and HV-.
Table 4 HiPot Test Parameters and Pass/Fail Limits
Preset / Node Pair / Target component / Applied voltage* / Normal current / Failure current min / Failure current max(+) / (-) / (V) / (mA) / (mA) / (mA)
1 / PMT_P / PMT_DY10 / C7 / 140 / 18.7 / 16.8 / 20.5
2 / PMT_DY10 / PMT_DY9 / C6 / 180 / 19.4 / 17.5 / 21.4
3 / PMT_DY9 / PMT_DY8 / C5 / 130 / 19.1 / 17.2 / 21.0
4 / PMT_DY8 / PMT_DY7 / C4 / 90 / 19.4 / 17.5 / 21.4
5 / PMT_DY7 / PMT_DY6 / C3 / 70 / 18.7 / 16.8 / 20.6
6 / PMT_DY6 / PMT_DY5 / C2 / 60 / 19.4 / 17.6 / 21.5
7 / PMT_DY5 / PMT_DY4 / C1 / 100 / 19.6 / 17.6 / 21.5
All Presets
Operating mode / DC Dielectric withstand test mode
Ramp up time / 5.0 sec
Ramp down time / 5.0 sec
Dwell time / 10.0 sec
* Corresponds to a total of 2.5kV applied between HV+ and HV-.
Appendix A Flying Probe Tolerance Data
Because of the high resistance values on the PMT HV Base Board, running the Flying Probe tester required non-standard tuning of the probe current and voltage.
The following table, provided by the EMS, demonstrates that all the flying-probe tester (“Pilot Tester”) is finally capable of measuring the resistance and capacitance to within the tolerance indicated (%) using only the probe access points marked in Figure 1.
Table A1 UW-Madison HV Base Pilot Test Summary
Test Type / Components Tested / Meas. Value / Meas. Tol. (%)Resistance / R1A_G / 52500000 / Ohm / 5
Resistance / R2 / 1870000 / Ohm / 5
Resistance / R3A_B / 10460000 / Ohm / 5
Resistance / R4A_B / 15360000 / Ohm / 5
Resistance / R5A_B / 10220000 / Ohm / 5
Resistance / R6 / 5110000 / Ohm / 5
Resistance / R7 / 3090000 / Ohm / 5
Resistance / R8 / 3740000 / Ohm / 5
Resistance / R9_R13 / 4640000 / Ohm / 5
Resistance / R10_R13_R14 / 6810000 / Ohm / 5
Resistance / R11A_B_R14_R15 / 9280000 / Ohm / 5
Resistance / R12_R15_R16_K1 / 7500000 / Ohm / 5
Resistance / R18_R16 / 100000 / Ohm / 5
Resistance / R17_FB1 / 100000 / Ohm / 5
Capacitance / C1 / 3.3 / nF / 15
Capacitance / C2 / 4.7 / nF / 15
Capacitance / C3 / 4.7 / nF / 15
Capacitance / C4_R13 / 4.7 / nF / 15
Capacitance / C5_R13_R14 / 10 / nF / 15
Capacitance / C6_R14_R15 / 10 / nF / 15
Capacitance / C7_R15_R16 / 22 / nF / 15
Untested = R16, K1, K2 (cable)
Appendix B The RF Measurement Software
B1. Contents of RunTest.bat
@echo off
prompt = [IceCube]
:start
cls
color f1
type blank
date /t
time /t
echo ------
echo IceCube
type blank
echo High Voltage Base Board
type blank
echo RF Impedance Test
type blank
echo Press [ctrl-C] to terminate
echo ------
type blank
:start
echo Please connect the cable and ...
type blank
pause
c:\python23\python SNentry.pyw ..\TestDat\logbook1.dat > thisuut.txt
type blank
echo Running test ...
type thisuut.txt
wait 30
gpib_write "DISP:LIMIT:STAT ON"
wait 5
REM gpib_read "DISP:LIMIT:RES?" temp.txt
gpib_read "DISP:LIMIT:RES?" result.txt
wait 1
gpib_write "DISP:LIMIT:STAT OFF"
echo ....Done
type blank
echo Test Result
type blank
echo []
echo []
echo _[]_
echo \\//
echo \/
type blank
c:\python23\python timestamp.pyw thisuut.txt result.txt ..\TestDat\logbook1.dat
type blank
type blank
pause
type blank
goto start
B2. Program Execution Environment
Windows XP
National Instruments GPIB driver for GPIB-USB-B adapter
Python 2.3
B3. Brief Description of the Files Referenced in RunTest.bat
SNentry.pyw Graphical user interface allowing the operator to enter the UUT serial number. The UUT value received from the GUI is passed on the command line argument.
timestamp.pyw Makes an entry into logbook1.dat by concatenating thisuut.txt, result.txt, and the timestamp of the test finish time.
logbook1.dat Log file created by SNentry.pyw, containing the UUT serial number, the Pass/Fail result, and the time stamp.
thisuut.txt Temporary text file containing the serial number of the UUT being tested.
result.txt Temporary text file containing the pass/fail result of the UUT being tested.
gpib_write.exe Sends the string passed on the command line to the GPIB port at address 11 (dec).
gpib_read.exe Sends the first argument to the GPIB port at address 11 (dec) and writes the value read from the port to the second argument.
B4. Contents of SNentry.pyw
from Tkinter import *
import sys
import os
class SNEntry:
def __init__(self):
self.root = Tk()
self.root.title('PMT HV Base Board Test')
self.root.protocol('WM_DELETE_WINDOW', self.root.bell)
try:
f = open(sys.argv[1], 'rt')
d = f.readlines()
f.close()
d = d[len(d)-1].split()
d = d[len(d)-2]
d = d.lstrip('SN')
d = str(int(d)+1)
except:
d = '001'
self.data = d
self.ent = None
def makeform(self):
def __fetch(*event):
self.data = self.ent.get()
self.root.destroy()
#return
row = Frame(self.root)
row.pack()
Label(row, width=20, text='Serial Number:').pack(side=LEFT, expand=NO, fill=X)
sn_ent = Entry(row)
sn_ent.config(width=10)
sn_ent.delete(0, END)
sn_ent.insert(0, self.data)
sn_ent.pack(expand=NO)
self.ent = sn_ent
self.root.bind('<Return>', __fetch)
Button(self.root, text='OK', command=__fetch).pack(side=BOTTOM)
def run(self):
self.makeform()
self.root.grab_set()
self.root.focus_set()
self.root.wait_window()
self.root.mainloop()
def get_data(self):
return self.data
if __name__=='__main__':
if len(sys.argv)>2:
exit('usage: SNentry.pyw loogbook.dat')
SN = SNEntry()
SN.run()
print SN.get_data()
B5. Contents of timestamp.pyw
import time
import sys
if len(sys.argv)>4:
print 'usage: timestamp sn_file pass_fail_file out_file'
exit(0)
try:
sn_file = open(sys.argv[1], 'rt')
except:
exit('FileError')
try:
pass_fail = open(sys.argv[2], 'rt')
except:
exit('FileError')
try:
out_file = open(sys.argv[3], 'at')
except:
exit('FileError')
sn = sn_file.readlines()
sn_file.close()
pf = pass_fail.readlines()
pass_fail.close()
outstr = "'"+time.asctime()+"'\tSN"+sn[0].rstrip('\n')+'\t'+pf[0].rstrip('\n')
out_file.write(outstr+'\n')
out_file.close()
print outstr