Supporting Information

for

Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides

Tong-Mou Geng a,b*, Xie Wang a,b, Zhu-Qing Wang a,b, Tai-Jie Chen a,b, Hai Zhu a,b

and Yu Wang c

a Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P. R. China

b Collaborative Innovation Center for Petrochemical New Materials, Anqing, Anhui 246011, P. R. China

c School of Reso urce and Environmental Science, Anqing Normal University, Anqing 246011, P. R. China

Fig. S1 FTIR spectra of MRBH

Fig. S2 1H NMR spectra of MRBH

(The H of –COOH in 1H NMR has not been showed in Fig. S2)

1H NMR (400 MHz, CDCl3, 298 K) of MRBH: 7.83 (d, Ar-H) d, 7.46 (m, C=C-H) b, 7.39 (d, Ar-H) f, 7.25 (d, Ar-H) e, 7.24(d, Ar-H) j, 6.97 (s, C=C-H) a, 6.84(d, Ar-H) g, 6.19 (d, Ar-H) h, 6.13 (d, Ar-H) i, 3.39 (n, -CH2-) k, 1.13 (m, -CH3) l.

Fig. S3 FTIR spectra of SR6GH

Fig. S4 1H NMR spectra of SR6GH

(The H of –COOH in 1H NMR has not been showed in Fig. S4)

1H NMR (400 MHz, CDCl3, 298 K) of SR6GH: 7.881-7.892 (d, Ar-H) d, 7.365-7.877 (m, Ar-H) f i, 6.956-6.991 (d, Ar-H) e, 6.426 (s, Ar-H, -CO-NH-N) c g, 6.213(s, Ar-H) j, 3.627-3.680 (m, Ar-NH-CH2-) m, 3.139-3.191(m, Ar-NH-CH2-) l, 2.551-2.588 (d, Ar-H) h, 6.13 (m, -CH2–COOH) a, 3.39 (m, -CH2-CO-NH-) b, 1.891(m, -CH2) l, 1.143-1.289 (m, -CH3) k.

Fig. S5 FTIR spectra of PVA-MRBH

Fig. S6 1H NMR spectra of PVA-MRBH

7.94 (d, Ar-H) e, 7.46(d, C=C-H) c, 7.31 (m, CO-NH-) d, 7.24 (d, Ar-H) i, 7.2-7.1 (d, Ar-H) g f, 6.97, 6.90 (d, C=C-H, Ar-H) b h, 6.19 (s, Ar-H) j, 6.13 (d, Ar-H) k, 4.652, 4.520, 4.452 (d, -OH) r, 4.510 (d, -CH-MRBH) q, 3.893 (m, -CH-OOCCH3) o, 3.408(m, -OOCCH3) l, 3.323(d, -CH-OH) p, 2.506, 2.502, 2.498 (m, -CH2-CH3) n, 1.593-1.372 (m, -CH2-) a, 1.073, 1.056, 1.038(m, -CH2-CH3) m.

Fig. S7 FTIR spectra of PVA-SR6GH

Fig. S8 1H NMR spectra of PVA-SR6GH

1.036-1.077 (m, -CH2-CH3) m, 1.595-1.376 (m, -CH2-) a,1.992 (s, –Φ-CH3) l, 2.498, 2.503, (m, -CH2-) f n, 3.178(s, CH3CH2-NH-Φ) s, 3.323(d, -CH-OH) q, 3.408(m, -OOCCH3) d, -CH-OOCCH3) b, 4.652, 4.520, 4.452 (d, -OH) e,6.313(s,–Φ-H) p, 6.534-6.586(s,–Φ-H) o, 7.067-7.097 (s,–Φ-H) k, 7.291(s,–Φ-H) j, 7.301 (m, CO-NH-) g, 7.461-7.511(s,–Φ-H) i, 7.965-8.005 (s,–Φ-H) h.

Fig.S9 Fluorescence emission spectra of PVA-MRBH aqueous solutions in the presence of different Cu2+ (a) or Fe3+ (b) ions concentration (Inset picture of Fig. S9 (a) and (b): The plots of the relationship between relative emission intensities (I/I0) and Cu2+ or Fe3+concentration)

Fig.S10 Fluorescence emission spectra of PVA-SR6GH aqueous solutions in the presence of different Cu2+ (a), Fe3+ (b), Cr3+ (c), or Hg2+ (d) ions concentration (Inset of Fig. S10 (a), (b), (c) and (d): The plots of the relationship between relative emission intensities (I/I0) and Cu2+, Fe3+, Cr3+, or Hg2+ concentration)

Fig. S11 a The plot of the relationship between relative emission intensities (I/I0) and Cu2+ concentration ([Cu2+]=0.5×10-4-2.0×10-4 mol/L)

Fig. S11 b The plot of the relationship between relative emission intensities (I/I0) and Fe3+concentration ([Fe3+]=0−5.0×10−4 mol/L)

Fig. S12 a The plot of the relationship between relative emission intensities (I/I0) and Cu2+ concentration ([Cu2+]=0−2.0×10−4mol/L)

Fig. S12 b The plot of the relationship between relative emission intensities (I/I0) and Fe3+ concentration ([Fe3+]=0−3.0×10−5 mol/L)

Fig. S12 c The plot of the relationship between relative emission intensities (I/I0) and Cr3+concentration ([Cr3+]=0−5.0×10−5 mol/L)

Fig. S12 d The plot of the relationship between relative emission intensities (I/I0) and Hg2+concentration ([Hg2+]=0−4.0×10−4mol/L)