Binuclear Rhenium Carbonyl Nitrosyls Related to Dicobalt Octacarbonyl and their Decarbonylation Products
Bing Xu,aQian-Shu Li,*b Yaoming Xie,c and R. Bruce King*c
aLibrary Information Department,Beijing University of Posts and Telecommunications,Beijing 100876, China
bKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
cDepartment of Chemistry and Center for Computational Chemistry,University of Georgia, Athens, Georgia 30602, USA
Supporting Information
Figures S1-S4: Optimized triplet structures of Re2(NO)4(CO)n (n = 3, 2, 1, 0).
Tables S1-S9:Total energies, relative energies, number of imaginary vibrational frequencies (Nimag), Re-Re bond distance and spin contamination of singlet and triplet structures of Re2(NO)4(CO)n (n = 4, 3, 2, 1, 0).
Tables S10-S24: Theoretical harmonic vibrational frequencies for Re2(NO)4(CO)n (n = 4, 3, 2, 1, 0)usingtheBP86 method.
Tables S25-S81:Theoretical Cartesian coordinatesRe2(NO)4(CO)n(n = 4, 3, 2, 1, 0)usingtheMPW1PW91 method.
Complete Gaussian 03 reference (Reference 37)
3T-1 (Cs) 3T-2 (Cs)
3T-3 (C1) 3T-4 (C1) 3T-5 (Cs)
3T-6 (C2) 3T-7 (Cs) 3T-8 (C1)
Figure S1. Optimized triplet structures of Re2(NO)4(CO)3
2T-1 (CS) 2T-2 (Ci) 2T-3 (Cs/C2h)
2T-4 (CS) 2T-5 (CS)
Figure S2. Optimized triplet structures of Re2(NO)4(CO)2
1T-1 (C1) 1T-2 (CS)
1T-3 (C1) 1T-4 (C1) 1T-5 (Cs)
Figure S3. Optimized triplet structures of Re2(NO)4(CO)
T-1 (Cs) T-2 (Ci)
T-3 (Cs) T-4 (C2h)
Figure S4. Optimized triplet structures of Re2(NO)4
Table S1. Total energies (E, in Hartree), relative energies (E, in kcal/mol), and Re-Re distances (Ǻ) for the Re2(NO)4(CO)4 structures obtained by the MPW1PW91 and BP86 methods. None of the structures has any imaginary vibrational frequencies.
MPW1PW91 / BP86E / ∆E / Re-Re / E / ∆E / Re-Re
4S-1 (C2h) / -1129.81944 / 0.0 / 3.010 / -1130.41595 / 0.0 / 3.048
4S-2 (C2v) / -1129.82193 / –1.6 / 2.906 / -1130.41440 / 1.0 / 2.944
4S-3 (C2) / -1129.81798 / 0.9 / 3.024 / -1130.41423 / 1.1 / 3.075
4S-4 (D2d) / -1129.82289 / –2.2 / 2.892 / -1130.41320 / 1.7 / 2.942
4S-5(Cs) / -1129.81561 / 2.5 / 2.984 / -1130.40878 / 4.5 / 3.035
4S-6(Cs) / -1129.81120 / 5.2 / 2.843 / -1130.40849 / 4.7 / 2.850
4S-7(C2) / -1129.82302 / –2.2 / 2.934 / -1130.40781 / 5.1 / 3.005
4S-8 (Cs) / -1129.81445 / 3.1 / 2.868 / -1130.40709 / 5.6 / 2.902
4S-9 (C2v) / -1129.81788 / 1.0 / 2.924 / -1130.40298 / 8.1 / 3.008
4S-10 (Cs) / -1129.80372 / 9.9 / 2.920 / -1130.40321 / 8.0 / 2.916
4S-11 (C2h) / -1129.79092 / 17.9 / 3.080 / -1130.38818 / 17.4 / 3.141
Table S2. Total energies (E, in Hartree), relative energies (E, in kcal/mol), numbers of imaginary vibrational frequencies (Nimag), and Re-Re distances (Ǻ) of the singlet Re2(NO)4(CO)3 structures.
MPW1PW91 / BP86E / E / Nimag / Re-Re / E / E / Nimag / Re-Re
3S-1 (C1) / -1016.46946 / 0.0 / 0 / 2.725 / -1017.03353 / 0.0 / 0 / 2.760
3S-2 (C1) / -1016.46834 / 0.7 / 0 / 2.730 / -1017.03261 / 0.6 / 0 / 2.764
3S-3 (Cs) / -1016.47392 / –2.8 / 0 / 2.734 / -1017.03222 / 0.8 / 0 / 2.779
3S-4 (Cs) / -1016.46363 / 3.6 / 0 / 2.790 / -1017.02588 / 4.8 / 0 / 2.803
3S-5(Cs) / -1016.46201 / 4.7 / 0 / 2.813 / -1017.02457 / 5.6 / 0 / 2.861
3S-6 (Cs) / -1016.45469 / 9.3 / 0 / 2.695 / -1017.02281 / 6.7 / 0 / 2.708
3S-7(Cs) / -1016.45768 / 7.4 / 1(16i) / 2.812 / -1017.01942 / 8.9 / 0 / 2.791
3S-8 (Cs) / -1016.44882 / 13.0 / 0 / 2.875 / -1017.01260 / 13.1 / 0 / 2.899
Table S3. Total energies (E, in Hartree), relative energies (E, in kcal/mol), numbers of imaginary vibrational frequencies (Nimag) and Re-Re bond distances (Ǻ) of singlet Re2(NO)4(CO)2structures.
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / E / ∆E / Nimag / Re-Re
2S-1 (C2) / -903.11236 / 0.0 / 0 / 2.730 / -903.64836 / 0.0 / 0 / 2.727
2S-2 (Ci) / -903.11099 / 0.9 / 1(29i) / 2.744 / -903.64695 / 0.9 / 0 / 2.749
2S-3 (C1) / -903.12123 / –5.6 / 0 / 2.746 / -903.64395 / 2.8 / 0 / 2.747
2S-4 (Cs) / -903.10693 / 3.4 / 0 / 2.681 / -903.63747 / 6.8 / 0 / 2.714
2S-5 (C2) / -903.09960 / 8.0 / 0 / 2.671 / -903.63191 / 10.3 / 0 / 2.636
2S-6 (C2h) / -903.09056 / 13.7 / 0 / 2.622 / -903.63262 / 9.9 / 0 / 2.654
2S-7 (C2h) / -903.07745 / 21.9 / 0 / 2.907 / -903.61722 / 19.5 / 0 / 2.931
Table S4. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag), and Re-Re bond distances (Ǻ) of singlet structures of Re2(NO)4(CO).
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / E / ∆E / Nimag / Re-Re
1S-1 (C1) / -789.74218 / 0.0 / 0 / 2.606 / -790.23871 / 0.0 / 0 / 2.581
1S-2 (Cs) / -789.73873 / 2.2 / 0 / 2.596 / -790.23389 / 3.0 / 0 / 2.633
1S-3 (Cs) / -789.73742 / 3.0 / 0 / 2.579 / -790.2289 / 6.2 / 0 / 2.606
1S-4 (Cs) / -789.72088 / 13.4 / 0 / 2.482 / -790.22671 / 7.5 / (15i) / 2.502
1S-5 (C1) / -789.72353 / 11.7 / 0 / 2.513 / -790.22418 / 9.1 / 0 / 2.527
1S-6 (Cs) / -789.72291 / 12.1 / 0 / 2.606 / -790.21628 / 14.1 / 0 / 2.633
1S-7 (Cs) / -789.71265 / 18.5 / 0 / 2.494 / -790.21588 / 14.3 / 0 / 2.477
Table S5. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), and Re-Re bond distances (Ǻ) for the optimized Re2(NO)4 structures. Neither structure has any imaginary vibrational frequencies.
E / ∆E / Re-Re / E / ∆E / Re-Re0S-1 (C2) / -676.37352 / 0.0 / 2.546 / -676.83486 / 0.0 / 2.534
0S-2 (C2v) / -676.34360 / 18.8 / 2.538 / -676.80912 / 16.2 / 2.565
Table S6.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO)3. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
3T-1 / -1016.46678 / 1.7 / 0 / 2.758 / 2.22 / -1017.02148 / 7.6 / 1(21i) / 2.804 / 2.03
3T-2 / -1016.46522 / 2.7 / 1(60i) / 2.739 / 2.17 / -1017.02200 / 7.2 / 0 / 2.802 / 2.02
3T-3 / -1016.46254 / 4.3 / 0 / 2.784 / 2.14 / -1017.02181 / 7.4 / 0 / 2.835 / 2.02
3T-4 / -1016.45397 / 9.7 / 0 / 2.740 / 2.12 / -1017.01240 / 13.3 / 0 / 2.828 / 2.02
3T-5 / -1016.44304 / 16.6 / 0 / 2.852 / 2.14 / -1017.00134 / 20.2 / 0 / 2.842 / 2.01
3T-6 / -1016.43891 / 19.2 / 0 / 2.747 / 2.10 / -1017.00451 / 19.2 / 0 / 2.773 / 2.01
3T-7 / -1016.43823 / 19.6 / 0 / 2.887 / 2.09 / -1017.00255 / 19.4 / 0 / 2.935 / 2.01
3T-8 / -1016.432455 / 23.2 / 0 / 2.952 / 2.10 / -1017.00225 / 19.6 / 0 / 2.908 / 2.01
Table S7. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO)2. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
2T-1 / -903.10343 / 5.6 / 0 / 2.675 / 2.08 / -903.62717 / 13.3 / 0 / 2.706 / 2.01
2T-2 / -903.10021 / 7.6 / 0 / 2.675 / 2.10 / -903.62617 / 13.9 / 0 / 2.703 / 2.01
2T-3 / -903.09677 / 9.8 / 0 / 2.641 / 2.15 / -903.62042 / 17.5 / 0 / 2.559 / 2.01
2T-4 / -903.09243 / 12.5 / 0 / 2.697 / 2.15 / -903.61668 / 19.9 / 0 / 2.743 / 2.02
2T-5 / -903.08270 / 18.6 / 1(17i) / 2.791 / 2.21 / -903.62057 / 17.4 / 0 / 2.779 / 2.02
Table S8.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO). Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
1T-1 / -789.72666 / 9.7 / 0 / 2.577 / 2.18 / -790.21874 / 12.5 / 0 / 2.546 / 2.01
1T-2 / -789.72206 / 12.6 / 1(8i) / 2.482 / 2.14 / -790.21886 / 12.5 / 0 / 2.504 / 2.01
1T-3 / -789.72466 / 11.0 / 0 / 2.632 / 2.10 / -790.21524 / 14.7 / 0 / 2.719 / 2.02
1T-4 / -789.72626 / 10.0 / 0 / 2.619 / 2.12 / -790.21424 / 15.4 / 0 / 2.714 / 2.02
1T-5 / -789.72153 / 13.0 / 0 / 2.656 / 2.17 / -790.20965 / 18.2 / 0 / 2.653 / 2.03
Table S9.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of Re2(NO)4. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.
MPW1PW91 / BP86E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
T-1 / -676.36434 / 5.8 / 0 / 2.521 / 2.13 / -676.82361 / 7.1 / 0 / 2.502 / 2.01
T-2 / Same as T-4 / -676.80891 / 16.3 / 0 / 2.708 / 2.03
T-3 / -676.34816 / 15.9 / 0 / 2.649 / 2.13 / -676.80695 / 17.5 / 0 / 2.677 / 2.03
T-4 / -676.36157 / 7.5 / 0 / 2.912 / 2.90 / -676.80420 / 19.2 / 0 / 2.887 / 2.13
Table S10.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
4S-1 / 4S-2 / 4S-3 / 4S-420.0 (au, 0.0)
32.8 (au, 0.0)
41.7 (ag, 0.0)
41.9 (bu, 0.1)
46.1 (bg, 0.0)
67.7 (ag, 0.0)
68.9 (bu, 0.7)
72.6 (bg, 0.0)
72.8 (au, 0.1)
74.3 (ag, 0.0)
80.6 (bu, 0.6)
83.8 (bg, 0.0)
84.0 (au, 0.0)
89.0 (ag, 0.0)
94.6 (bu, 0.5)
112.3 (ag, 0.0)
335.9 (au, 0.8)
336.3 (bg, 0.0)
369.4 (ag, 0.0)
375.3 (bg, 0.0)
376.5 (au, 0.9)
388.7 (bu, 8.3)
400.0 (bg, 0.0)
421.3 (au, 46.2)
447.1 (ag, 0.0)
447.1 (bu, 19.2)
456.8 (ag, 0.0)
464.5 (bu, 14.9)
481.7 (ag, 0.0)
486.9 (bg, 0.0)
488.1 (bu, 9.5)
498.3 (au, 94.2)
533.1 (bg, 0.0)
533.4 (au, 15.9)
550.2 (bu, 19.9)
551.0 (ag, 0.0)
565.2 (bu, 276.2)
575.2 (ag, 0.0)
578.9 (bu, 151.2)
591.2 (ag, 0.0)
1735.0 (bg, 0.0)
1753.4 (au, 2078.0)
1755.9 (bu, 782.7)
1779.1 (ag, 0.0)
1972.7 (bu, 1150.5)
1973.7 (ag, 0.0)
2014.4 (bu, 2118.1)
2027.3 (ag, 0.0) / 26.5 (b1, 0.8)
33.1 (b2, 0.0)
43.4 (a2, 0.0)
51.7 (b1, 0.0)
68.3 (a1, 0.0)
72.5 (b2, 0.2)
75.9 (a1, 0.4)
76.3 (b1, 0.0)
79.3 (a2, 0.0)
82.5 (b2, 0.0)
85.9 (a2, 0.0)
86.2 (a1, 0.0)
98.4 (b2, 0.6)
136.4 (b1, 0.8)
138.4 (a1, 1.2)
191.2 (a1, 2.1)
266.3 (b1, 0.0)
290.3 (a2, 0.0)
307.6 (b2, 0.6)
376.0 (b2, 36.3)
380.6 (a2, 0.0)
390.3 (a1, 23.0)
397.5 (b2, 6.7)
417.1 (b1, 7.1)
449.2 (a1, 0.1)
468.7 (b1, 22.7)
473.7 (a1, 21.6)
479.6 (a2, 0.0)
491.6 (b2, 33.8)
500.0 (b1, 20.5)
518.3 (a1, 76.8)
526.2 (a2, 0.0)
531.6 (a1, 11.5)
538.3 (b1, 20.4)
540.2 (b2, 2.5)
560.9 (b2, 89.8)
572.9 (a1, 16.3)
588.6 (a1, 52.9)
601.1 (b1, 21.1)
628.1 (a1, 234.2)
1560.4 (b1, 838.3)
1572.6 (a1, 44.3)
1709.5 (b2, 882.0)
1743.1 (a1, 1207.5)
1991.0 (b1, 837.3)
1995.2 (b2, 1421.7)
2005.8 (a1, 497.8)
2075.6 (a1, 565.8) / 23.5 (a, 0.0)
34.0 (b, 0.0)
39.9 (a, 0.0)
42.6 (b, 0.0)
44.6 (a, 0.0)
68.5 (a, 0.4)
69.1 (b, 0.3)
72.8 (a, 0.0)
73.4 (b, 0.1)
76.2 (a, 0.0)
82.1 (b, 0.7)
84.3 (a, 0.0)
84.4 (b, 0.0)
87.8 (a, 0.0)
88.9 (b, 0.6)
111.2 (a, 0.0)
334.2 (a, 0.2)
335.5 (b, 0.5)
369.6 (b, 0.1)
370.9 (a, 0.1)
378.8 (b, 2.3)
386.8 (a, 0.1)
406.5 (a, 12.3)
417.3 (b, 34.0)
444.0 (b, 11.0)
448.3 (a, 17.8)
456.0 (a, 1.3)
462.6 (b, 11.4)
482.6 (a, 29.5)
483.4 (b, 1.1)
490.5 (b, 62.9)
491.0 (a, 5.0)
535.0 (a, 5.9)
535.3 (b, 13.1)
552.1 (b, 12.0)
552.5 (a, 7.5)
567.1 (b, 349.2)
576.8 (a, 46.9)
578.5 (b, 52.8)
595.3 (a, 1.2)
1741.4 (a, 369.5)
1743.9 (b, 782.7)
1756.2 (b, 900.8)
1783.3 (a, 795.7)
1967.0 (b, 471.3)
1980.7 (a, 544.5)
2011.6 (b, 2002.5)
2029.4 (a, 267.9) / 25.1 (b1, 0.0)
36.7 (e, 0.0)
36.7 (e, 0.0)
64.8 (a1, 0.0)
71.4 (b2, 0.9)
71.4 (e, 0.3)
71.4 (e, 0.3)
82.0 (a2, 0.0)
82.2 (b1, 0.0)
83.2 (e, 0.5)
83.2 (e, 0.5)
87.0 (e, 0.0)
87.0 (e, 0.0)
89.4 (b2, 6.7)
91.9 (a1, 0.0)
120.6 (a1, 0.0)
276.8 (e, 0.1)
276.8 (e, 0.1)
335.0 (a2, 0.0)
346.0 (b1, 0.0)
369.6 (e, 2.0)
369.6 (e, 2.0)
393.7 (b2, 176.2)
410.8 (e, 14.0)
410.8 (e, 14.0)
436.0 (b1, 0.0)
439.6 (a1, 0.0)
451.0 (a2, 0.0)
460.6 (b2, 66.9)
467.7 (a1, 0.0)
490.3 (e, 42.9)
490.3 (e, 42.9)
542.8 (e, 3.4)
542.8 (e, 3.4)
557.7 (a1, 0.0)
561.7 (e, 40.9)
561.7 (e, 40.9)
562.1 (b2, 27.1)
613.2 (a1, 0.0)
616.1 (b2, 54.8)
1748.7 (e, 779.9)
1748.7 (e, 779.9)
1763.3 (b2, 1894.9)
1777.8 (a1, 0.0)
1978.9 (e, 1246.5)
1978.9 (e, 1246.5)
2002.6 (b2, 64.9)
2037.5 (a1, 0.0)
Table S11.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
4S-5 / 4S-6 / 4S-7 / 4S-811.6 (a", 0.0)
30.1 (a", 0.0)
31.6 (a', 0.3)
55.7 (a", 0.0)
62.7 (a', 0.3)
65.6 (a', 0.2)
73.7 (a', 0.3)
76.4 (a", 0.1)
82.7 (a", 0.0)
83.8 (a', 0.2)
84.8 (a", 0.0)
87.1 (a', 2.0)
88.8 (a", 0.0)
89.4 (a', 0.2)
110.6 (a', 0.7)
118.8 (a', 0.7)
274.8 (a", 0.0)
339.0 (a", 0.2)
349.0 (a", 0.6)
367.6 (a", 0.1)
375.6 (a', 4.2)
390.6 (a', 2.8)
405.2 (a', 16.5)
429.4 (a', 55.4)
437.4 (a", 20.0)
449.0 (a", 2.3)
454.6 (a', 6.2)
464.9 (a', 5.0)
471.1 (a', 98.1)
489.7 (a", 58.0)
493.2 (a", 22.6)
504.9 (a', 11.2)
521.9 (a", 13.2)
543.2 (a', 0.6)
545.7 (a", 2.7)
556.4 (a', 84.4)
560.8 (a', 1.6)
568.0 (a', 0.9)
579.8 (a', 149.3)
615.0 (a', 5.1)
1730.0 (a", 502.5)
1755.0 (a', 356.2)
1756.3 (a", 1565.5)
1783.5 (a', 750.3)
1959.5 (a', 157.3)
1998.8 (a', 1525.0)
2010.7 (a', 1209.9)
2046.6 (a', 94.9) / 8.5 (a", 0.0)
43.0 (a", 0.2)
47.6 (a', 0.5)
50.5 (a", 0.3)
57.6 (a", 0.3)
59.6 (a', 0.2)
62.9 (a', 0.3)
77.0 (a", 0.0)
78.1 (a', 0.0)
82.9 (a', 0.0)
83.0 (a", 0.2)
85.0 (a", 0.5)
85.1 (a', 0.3)
87.2 (a', 0.3)
104.3 (a', 1.5)
132.3 (a', 2.3)
292.4 (a", 0.0)
341.1 (a", 0.6)
346.7 (a", 0.1)
355.0 (a', 12.6)
357.1 (a", 0.8)
357.6 (a', 8.2)
361.0 (a", 20.6)
389.2 (a', 11.1)
389.6 (a", 10.2)
433.4 (a", 0.1)
440.7 (a', 4.9)
466.6 (a', 0.1)
486.4 (a', 57.6)
503.3 (a", 25.1)
503.8 (a', 19.0)
515.7 (a", 31.1)
517.8 (a', 35.4)
533.9 (a', 11.7)
546.8 (a', 0.1)
548.2 (a", 0.0)
563.2 (a', 15.2)
568.4 (a', 47.1)
568.8 (a", 47.0)
599.3 (a', 74.6)
1691.0 (a', 763.9)
1691.6 (a", 754.8)
1732.2 (a', 1342.7)
1801.2 (a', 917.1)
2001.5 (a", 1131.2)
2001.6 (a', 1139.7)
2016.8 (a", 23.5)
2071.3 (a', 115.3) / 22.4 (a, 0.0)
34.4 (a, 0.0)
44.3 (b, 0.2)
62.0 (a, 0.1)
65.1 (b, 0.6)
72.6 (b, 0.1)
72.7 (a, 0.1)
74.9 (a, 0.2)
79.7 (b, 0.1)
81.8 (b, 0.0)
82.9 (b, 0.4)
84.2 (a, 0.0)
100.5 (a, 0.0)
128.0 (a, 0.4)
223.7 (a, 0.0)
224.3 (b, 0.2)
312.8 (b, 2.2)
337.1 (a, 1.6)
369.3 (b, 0.5)
370.6 (a, 0.3)
385.0 (a, 0.0)
391.6 (b, 38.1)
394.8 (a, 2.9)
426.4 (a, 12.1)
426.9 (b, 15.0)
458.5 (a, 7.4)
461.2 (b, 49.2)
471.9 (a, 17.8)
472.8 (b, 16.4)
484.2 (b, 31.8)
488.8 (b, 38.4)
503.8 (a, 3.9)
529.1 (a, 1.7)
533.3 (b, 98.3)
541.7 (b, 2.2)
547.8 (a, 10.1)
551.1 (b, 19.0)
600.1 (a, 61.9)
631.0 (a, 2.1)
648.2 (b, 172.6)
1504.0 (b, 503.1)
1522.3 (a, 133.2)
1790.0 (b, 1498.2)
1797.7 (a, 385.8)
1979.8 (b, 420.6)
1984.8 (a, 1473.7)
2017.6 (b, 1784.5)
2034.3 (a, 7.8) / 10.3 (a", 0.0)
39.7 (a", 0.0)
41.5 (a', 0.5)
57.8 (a', 0.0)
62.4 (a', 0.0)
66.1 (a", 0.0)
70.5 (a', 0.0)
73.6 (a', 0.2)
76.7 (a", 0.1)
81.1 (a', 0.3)
83.5 (a", 0.0)
83.5 (a', 0.2)
86.1 (a", 0.0)
88.3 (a", 0.4)
136.9 (a', 1.5)
218.9 (a', 1.1)
292.8 (a", 4.1)
331.2 (a", 0.1)
364.4 (a', 21.5)
371.3 (a", 4.3)
378.4 (a', 1.4)
380.4 (a", 29.3)
396.8 (a", 4.2)
425.5 (a', 54.6)
428.1 (a", 0.0)
443.4 (a', 0.5)
450.2 (a', 4.0)
455.6 (a', 18.7)
465.6 (a', 15.7)
479.5 (a", 4.8)
498.0 (a", 33.2)
511.9 (a', 15.1)
528.9 (a', 131.0)
538.3 (a", 3.6)
545.3 (a', 0.2)
547.6 (a", 61.3)
548.7 (a', 57.5)
565.0 (a', 172.5)
576.5 (a', 76.6)
639.0 (a', 81.5)
1520.9 (a', 474.0)
1721.3 (a", 884.9)
1743.8 (a', 842.3)
1772.5 (a', 863.7)
1985.2 (a', 766.9)
2006.8 (a", 1243.7)
2008.2 (a', 983.2)
2063.9 (a', 62.1)
Table S12.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
4S-9 / 4S-10 / 4S-1120.4 (b1, 0.0)
24.7 (a2, 0.0)
34.6 (a1, 0.0)
61.4 (a2, 0.0)
62.0 (b2, 0.0)
70.1 (a1, 0.0)
73.4 (b1, 0.0)
78.4 (b1, 0.3)
78.9 (a1, 0.2)
80.5 (b2, 0.4)
81.1 (a2, 0.0)
81.8 (b2, 0.2)
101.0 (a1, 0.2)
145.9 (a1, 0.3)
214.7 (a2, 0.0)
224.3 (b2, 0.1)
315.2 (b1, 0.4)
350.5 (b1, 0.3)
362.8 (a1, 0.9)
366.0 (a2, 0.0)
376.2 (a2, 0.0)
391.2 (b1, 3.8)
402.2 (a1, 5.5)
414.4 (b2, 13.5)
426.9 (b2, 54.0)
435.3 (a2, 0.0)
437.2 (b1, 31.5)
438.8 (a1, 14.3)
445.7 (a2, 0.0)
471.8 (a1, 1.8)
491.8 (b2, 255.4)
492.7 (b1, 46.6)
515.6 (a1, 0.0)
525.7 (b2, 84.5)
539.8 (b1, 45.5)
561.0 (a1, 0.2)
565.7 (b2, 0.0)
593.3 (a1, 91.6)
607.6 (a2, 0.0)
674.9 (b2, 207.3)
1516.9 (b1, 473.0)
1545.4 (a1, 1214.3)
1775.5 (b2, 127.2)
1786.8 (a1, 1015.9)
1975.0 (a2, 0.0)
1986.6 (b1,1560.6)
2006.9 (b2, 917.6)
2035.6 (a1, 778.4) / 23.5 (a", 0.0)
32.2 (a", 0.0)
39.7 (a', 1.6)
44.4 (a', 0.1)
65.6 (a', 0.1)
68.2 (a", 0.0)
68.4 (a', 0.2)
73.2 (a", 0.1)
73.3 (a', 0.6)
78.8 (a', 0.6)
81.7 (a", 0.0)
83.5 (a', 1.2)
86.6 (a", 0.1)
88.1 (a", 0.1)
126.5 (a', 0.6)
186.0 (a', 14.8)
290.4 (a", 0.0)
315.6 (a", 0.5)
340.7 (a", 1.9)
345.7 (a', 56.6)
355.7 (a', 67.7)
366.7 (a', 59.2)
381.5 (a", 16.3)
388.0 (a", 12.7)
421.9 (a', 39.1)
446.3 (a', 5.4)
447.5 (a", 0.1)
468.4 (a', 0.9)
490.3 (a', 33.6)
496.4 (a", 2.7)
516.1 (a", 51.8)
521.2 (a', 2.9)
524.9 (a', 65.0)
533.9 (a', 14.9)
548.4 (a", 0.7)
550.1 (a', 44.6)
560.8 (a", 58.7)
563.8 (a', 7.1)
574.5 (a', 177.1)
599.5 (a', 3.5)
1715.1 (a", 891.7)
1716.4 (a', 691.6)
1754.6 (a', 1077.8)
1787.3 (a', 1287.6)
1852.7 (a', 153.4)
1995.2 (a', 863.0)
2010.7 (a", 1231.9)
2069.8 (a', 231.9) / 19.9 (bu, 0.3)
31.6 (au, 0.0)
38.9 (au, 0.0)
41.7 (ag, 0.0)
58.3 (bg, 0.0)
62.3 (bg, 0.0)
67.2 (au, 0.2)
72.9 (ag, 0.0)
77.4 (bu, 0.1)
80.3 (ag, 0.0)
82.4 (bu, 2.3)
84.7 (bg, 0.0)
89.1 (ag, 0.0)
92.4 (au, 0.0)
97.1 (bu, 2.5)
107.4 (ag, 0.0)
337.6 (ag, 0.0)
347.5 (bg, 0.0)
348.4 (au, 0.0)
355.4 (bu, 10.9)
358.2 (bg, 0.0)
377.3 (au, 2.9)
378.2 (bu, 17.5)
383.3 (ag, 0.0)
427.6 (bu, 143.2)
431.3 (bg, 0.0)
437.0 (au, 2.2)
446.6 (ag, 0.0)
460.8 (au, 32.2)
467.1 (bg, 0.0)
487.7 (bu, 167.9)
508.9 (ag, 0.0)
531.2 (bu, 61.6)
532.6 (ag, 0.0)
544.4 (ag, 0.0)
550.0 (au, 70.8)
556.4 (bg, 0.0)
556.8 (bu, 36.9)
558.1 (ag, 0.0)
566.9 (bu, 85.9)
1727.6 (bu,1326.5)
1732.3 (ag, 0.0)
1787.7 (bu,2050.8)
1794.6 (ag, 0.0)
1953.2 (bg, 0.0)
1971.5 (au, 1921.7)
1986.4 (bu, 740.1)
2014.6 (ag, 0.0)
Table S13.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)3using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
3S-1 / 3S-2 / 3S-3 / 3S-418.1 (a, 0.0)
30.0 (a, 0.0)
54.9 (a, 1.1)
61.5 (a, 0.1)
65.8 (a, 0.3)
73.4 (a, 0.1)
74.0 (a, 0.4)
77.3 (a, 0.2)
81.1 (a, 0.0)
83.0 (a, 0.1)
87.2 (a, 1.0)
97.7 (a, 0.1)
156.7 (a, 0.3)
225.0 (a, 0.9)
329.6 (a, 0.5)
346.3 (a, 1.1)
361.9 (a, 5.9)
379.1 (a, 5.9)
391.6 (a, 18.3)
395.8 (a, 0.6)
409.0 (a, 25.1)
442.3 (a, 23.6)
448.4 (a, 12.6)
453.0 (a, 16.9)
469.3 (a, 5.6)
483.0 (a, 9.3)
493.7 (a, 33.4)
506.3 (a, 116.1)
531.2 (a, 43.2)
536.7 (a, 51.5)
551.9 (a, 68.0)
556.0 (a, 71.5)
565.1 (a, 0.8)
580.6 (a, 51.4)
645.4 (a, 32.6)
1540.0 (a, 462.0)
1744.8 (a, 658.5)
1767.6 (a, 2009.6)
1774.3 (a, 75.7)
1972.2 (a, 736.3)
1998.6 (a, 1610.7)
2015.5 (a, 209.1) / 13.1 (a, 0.0)
29.1 (a, 0.0)
55.1 (a, 0.2)
58.8 (a, 0.7)
62.9 (a, 0.9)
73.6 (a, 0.3)
74.5 (a, 0.3)
77.5 (a, 0.2)
81.2 (a, 0.1)
82.6 (a, 0.1)
86.1 (a, 1.0)
96.4 (a, 0.3)
156.6 (a, 0.2)
227.0 (a, 1.0)
337.7 (a, 0.2)
352.5 (a, 0.8)
356.8 (a, 4.8)
369.6 (a, 8.9)
392.8 (a, 8.0)
401.6 (a, 5.9)
411.6 (a, 55.4)
442.8 (a, 19.8)
447.8 (a, 1.4)
456.4 (a, 16.2)
468.9 (a, 9.1)
480.1 (a, 12.2)
492.6 (a, 56.1)
505.7 (a, 14.1)
529.7 (a, 70.2)
532.8 (a, 22.3)
538.7 (a, 134.0)
563.3 (a, 55.7)
566.0 (a, 18.8)
584.7 (a, 44.2)
646.5 (a, 35.3)
1534.2 (a, 466.4)
1746.5 (a, 645.0)
1768.4 (a, 1215.6)
1779.9 (a, 895.2)
1970.5 (a, 831.7)
1993.7 (a, 836.3)
2017.6 (a, 787.2) / 26.8 (a", 0.0)
33.3 (a', 0.0)
62.2 (a", 0.1)
65.1 (a", 0.0)
72.3 (a', 1.8)
74.7 (a", 0.2)
75.6 (a', 0.3)
85.2 (a', 0.2)
88.0 (a', 0.4)
91.0 (a', 0.1)
91.1 (a", 0.0)
159.8 (a', 0.1)
210.3 (a", 1.8)
211.2 (a', 0.5)
281.8 (a", 0.0)
307.5 (a", 0.4)
341.0 (a', 0.2)
401.6 (a', 0.2)
404.0 (a", 0.7)
415.4 (a", 10.8)
430.1 (a', 27.2)
449.9 (a", 1.5)
462.2 (a', 2.5)
468.9 (a", 23.9)
471.7 (a', 89.9)
504.4 (a", 37.6)
515.0 (a', 22.4)
527.6 (a', 1.3)
534.7 (a', 7.6)
546.2 (a", 9.4)
548.6 (a', 45.4)
551.2 (a', 0.3)
593.5 (a', 51.8)
622.0 (a", 0.3)
635.9 (a', 277.9)
1538.7 (a", 794.5)
1560.5 (a', 0.6)
1727.8 (a', 978.7)
1766.5 (a', 1198.5)
1965.7 (a', 937.3)
1987.6 (a", 747.6)
2038.3 (a', 1014.7) / 16.3 (a", 0.0)
22.8 (a', 0.4)
39.0 (a", 0.0)
50.8 (a', 0.4)
59.0 (a", 0.0)
71.1 (a', 0.0)
76.0 (a", 0.0)
77.4 (a', 0.2)
79.5 (a', 0.1)
80.9 (a', 0.9)
81.9 (a", 0.1)
87.2 (a", 0.0)
87.3 (a', 0.4)
133.0 (a', 2.8)
323.2 (a", 1.5)
342.7 (a", 0.0)
366.3 (a", 0.3)
367.4 (a', 8.8)
370.2 (a", 2.7)
394.6 (a', 1.2)
421.7 (a", 17.1)
431.6 (a', 20.1)
446.1 (a', 9.9)
460.7 (a', 10.0)
471.9 (a", 8.7)
475.2 (a', 11.0)
485.8 (a", 58.3)
525.4 (a", 3.8)
543.7 (a', 53.1)
549.3 (a', 33.7)
549.8 (a', 35.0)
562.2 (a", 0.7)
564.8 (a', 18.8)
577.5 (a', 100.7)
639.9 (a', 0.7)
1717.7 (a", 120.1)
1743.3 (a", 1899.2)
1747.3 (a', 927.1)
1773.3 (a', 31.3)
1973.2 (a', 670.7)
2001.2 (a', 1574.4)
2017.2 (a', 465.3)
Table S14.Theoretical harmonic vibrational frequencies (in cm–1) for singletstructures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
3S-5 / 3S-6 / 3S-7 / 3S-85.8 (a", 0.1)
25.6 (a', 0.1)
32.4 (a", 0.0)
39.5 (a', 0.2)
56.7 (a", 0.0)
71.8 (a', 0.3)
73.2 (a", 0.0)
77.1 (a', 0.0)
79.0 (a', 0.0)
80.7 (a", 0.0)
82.7 (a', 0.6)
87.1 (a', 0.6)
87.2 (a", 0.1)
127.7 (a', 2.7)
324.9 (a", 1.7)
332.5 (a", 0.0)
347.6 (a', 0.4)
357.3 (a", 0.0)
374.5 (a", 3.4)
390.2 (a', 2.5)
434.3 (a", 12.3)
439.2 (a', 20.8)
443.5 (a', 10.0)
456.0 (a', 13.9)
459.3 (a', 1.6)
465.5 (a", 46.6)
474.7 (a", 14.3)
534.5 (a", 7.0)
538.5 (a', 144.0)
551.5 (a', 12.9)
561.0 (a', 12.3)
562.6 (a', 33.3)
565.2 (a", 1.8)
581.8 (a', 110.1)
644.4 (a', 0.7)
1716.4 (a", 169.9)
1740.2 (a', 248.4)
1751.7 (a", 1711.9)
1784.9 (a', 894.2)
1929.7 (a', 347.0)
1998.9 (a', 1591.1)
2013.8 (a', 523.0) / 10.1 (a", 0.1)
27.6 (a', 0.1)
53.6 (a', 0.1)
64.7 (a", 0.2)
64.9 (a', 0.0)
69.4 (a", 0.2)
71.8 (a', 0.3)
75.8 (a', 0.6)
79.1 (a", 0.2)
82.1 (a', 0.0)
83.3 (a", 0.8)
93.8 (a", 0.5)
108.6 (a', 3.7)
160.7 (a', 1.6)
298.0 (a", 0.7)
349.3 (a", 1.0)
353.5 (a", 13.4)
354.2 (a', 8.2)
369.6 (a', 6.8)
384.2 (a", 5.2)
397.5 (a', 30.0)
416.7 (a", 5.7)
450.7 (a', 26.2)
480.3 (a', 106.4)
481.4 (a", 0.3)
485.5 (a", 54.5)
493.5 (a', 23.4)
508.0 (a', 56.0)
538.0 (a', 26.6)
540.7 (a", 0.0)
545.2 (a', 93.0)
545.8 (a", 18.7)
557.3 (a', 2.7)
567.5 (a', 70.3)
575.9 (a', 2.7)
1705.8 (a", 722.7)
1711.6 (a', 975.3)
1753.1 (a', 1236.2)
1780.6 (a', 689.3)
1966.4 (a", 1210.4)
1983.7 (a', 372.3)
2029.2 (a', 468.3) / 10.8 (a", 0.0)
20.4 (a', 0.2)
37.8 (a', 0.4)
53.2 (a", 0.6)
61.0 (a", 0.0)
61.7 (a', 0.5)
72.8 (a", 0.0)
74.3 (a', 0.3)
77.5 (a', 0.1)
80.8 (a', 0.5)
86.3 (a", 0.0)
100.9 (a", 0.0)
109.9 (a', 1.3)
142.1 (a', 4.7)
300.9 (a', 5.0)
310.7 (a", 0.0)
325.0 (a", 2.0)
326.3 (a', 6.6)
346.2 (a", 0.3)
363.1 (a", 2.4)
387.6 (a', 0.7)
437.9 (a", 0.6)
444.0 (a', 66.1)
449.8 (a", 19.9)
462.4 (a', 20.7)
469.9 (a", 3.5)
477.2 (a', 31.4)
539.7 (a', 15.8)
549.5 (a', 269.5)
554.0 (a", 1.1)
557.1 (a', 31.1)
562.3 (a', 42.7)
568.8 (a", 37.5)
584.4 (a', 0.2)
637.0 (a', 4.5)
1730.7 (a", 625.4)
1745.2 (a', 379.9)
1752.6 (a', 1950.8)
1778.6 (a', 676.5)
1931.7 (a", 1224.9)
1961.2 (a', 136.9)
2008.6 (a', 755.9) / 30.4 (a", 0.0)
47.7 (a", 0.0)
49.8 (a', 0.2)
56.3 (a', 0.7)
63.3 (a', 0.2)
65.1 (a", 0.1)
68.5 (a", 0.3)
78.8 (a', 0.1)
82.6 (a', 1.2)
84.6 (a", 0.9)
94.0 (a", 0.5)
111.0 (a', 0.3)
147.9 (a', 1.5)
225.1 (a', 0.2)
253.0 (a', 17.9)
271.2 (a", 0.3)
299.0 (a", 0.4)
351.4 (a", 24.2)
375.6 (a", 10.1)
392.2 (a", 4.5)
419.4 (a', 0.8)
441.1 (a', 10.5)
468.8 (a", 24.3)
478.0 (a', 0.2)
491.3 (a', 0.5)
501.4 (a', 32.7)
512.9 (a", 36.7)
520.5 (a', 78.2)
539.0 (a', 6.7)
549.2 (a", 0.1)
560.8 (a", 17.7)
561.4 (a', 55.1)
565.2 (a', 3.5)
575.5 (a', 49.1)
635.4 (a', 47.7)
1574.9 (a', 455.0)
1602.6 (a', 438.8)
1712.3 (a", 915.5)
1743.3 (a', 1313.7)
1965.6 (a', 791.9)
1977.6 (a", 1543.6)
2048.8 (a', 570.2)
Table S15.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
3T-1 / 3T-2 / 3T-3 / 3T-4-21.4 (a", 0.1)
39.2 (a", 0.0)
58.8 (a', 0.3)
63.3 (a", 0.0)
72.7 (a', 0.2)
77.4 (a', 0.4)
77.4 (a", 0.2)
87.1 (a", 0.0)
89.3 (a', 0.0)
89.4 (a", 0.7)
90.8 (a', 0.2)
155.2 (a', 2.1)
203.2 (a', 5.5)
205.1 (a", 0.2)
228.1 (a', 2.1)
294.5 (a', 22.0)
303.4 (a", 0.1)
347.6 (a", 2.4)
389.4 (a', 4.9)
393.2 (a", 0.5)
409.9 (a', 0.5)
424.1 (a', 4.7)
434.7 (a", 0.0)
442.8 (a', 3.4)
463.3 (a', 17.6)
473.8 (a', 2.0)
490.2 (a", 0.2)
496.0 (a", 5.3)
502.2 (a", 25.0)
534.5 (a', 10.9)
539.7 (a', 5.3)
550.1 (a", 24.8)
564.6 (a', 35.8)
581.9 (a', 37.8)
625.7 (a', 88.5)
1477.4 (a', 384.7)
1582.0 (a', 318.5)
1696.3 (a", 859.1)
1728.0 (a', 1110.4)
1968.8 (a", 970.6)
1985.3 (a', 698.0)
2038.9 (a', 1067.1) / 10.4 (a", 0.0)
37.4 (a', 0.1)
55.5 (a", 0.2)
66.9 (a', 0.2)
72.5 (a', 0.1)
75.3 (a", 0.1)
78.5 (a", 0.4)
84.9 (a', 0.0)
89.8 (a', 1.1)
90.2 (a", 0.0)
90.3 (a', 0.3)
155.5 (a', 2.3)
200.0 (a', 0.0)
212.5 (a', 1.0)
233.1 (a", 0.2)
280.7 (a", 2.9)
303.5 (a", 2.7)
373.7 (a", 4.0)
375.7 (a', 5.2)
394.9 (a", 2.1)
412.4 (a', 3.6)
416.7 (a", 0.0)
421.1 (a', 4.5)
445.5 (a", 0.7)
460.3 (a", 9.6)
464.1 (a', 11.2)
475.8 (a', 5.4)
491.3 (a', 3.7)
499.2 (a', 14.1)
529.5 (a", 9.9)
542.9 (a', 4.1)
549.7 (a', 18.5)
573.5 (a", 27.0)
576.1 (a', 48.6)
627.9 (a', 104.4)
1515.7 (a", 749.7)
1544.0 (a', 3.7)
1689.7 (a', 854.0)
1725.1 (a', 1082.1)
1968.8 (a', 944.5)
1989.0 (a", 700.8)
2039.7 (a', 1074.9) / 23.4 (a, 0.0)
30.8 (a, 0.0)
53.8 (a, 0.3)
65.4 (a, 0.3)
66.4 (a, 0.2)
75.6 (a, 0.2)
77.0 (a, 0.1)
79.6 (a, 0.2)
82.7 (a, 0.4)
85.5 (a, 0.1)
87.2 (a, 0.1)
120.6 (a, 1.6)
145.8 (a, 0.1)
218.3 (a, 0.2)
243.9 (a, 1.2)
311.3 (a, 4.0)
324.9 (a, 0.4)
357.5 (a, 5.9)
368.9 (a, 3.3)
377.1 (a, 1.2)
420.5 (a, 1.1)
426.8 (a, 8.6)
439.4 (a, 5.2)
454.0 (a, 13.8)
455.1 (a, 28.6)
465.1 (a, 15.8)
487.6 (a, 9.3)
498.1 (a, 14.9)
504.5 (a, 0.7)
521.5 (a, 41.0)
539.2 (a, 13.1)
545.0 (a, 8.6)
545.9 (a, 27.6)
558.2 (a, 86.2)
621.5 (a, 68.1)
1477.0 (a, 322.2)
1694.5 (a, 892.3)
1721.2 (a, 1167.6)
1783.1 (a, 691.0)
1899.0 (a, 611.8)
1982.3 (a, 893.5)
2031.6 (a, 897.7) / 21.6 (a, 0.0)
25.6 (a, 0.0)
56.0 (a, 0.3)
59.5 (a, 0.4)
66.8 (a, 0.3)
70.4 (a, 0.1)
73.2 (a, 0.0)
80.1 (a, 0.1)
81.3 (a, 0.2)
83.7 (a, 0.0)
85.1 (a, 0.2)
101.8 (a, 1.8)
143.4 (a, 0.3)
197.3 (a, 0.5)
205.7 (a, 1.8)
297.1 (a, 2.0)
325.3 (a, 6.0)
343.0 (a, 1.9)
361.2 (a, 3.1)
384.4 (a, 2.5)
395.7 (a, 1.9)
406.2 (a, 8.7)
421.8 (a, 4.6)
448.1 (a, 20.8)
453.5 (a, 12.7)
463.4 (a, 3.8)
473.6 (a, 39.3)
492.5 (a, 3.0)
516.9 (a, 4.5)
519.7 (a, 33.0)
530.6 (a, 25.9)
541.2 (a, 48.8)
555.3 (a, 21.3)
558.6 (a, 7.9)
584.8 (a, 20.2)
1458.0 (a, 301.5)
1727.5 (a, 700.0)
1732.4 (a, 1705.1)
1751.5 (a, 291.5)
1910.2 (a, 702.5)
1985.4 (a, 1133.4)
2026.2 (a, 771.5)
Table S16.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
3T-5 / 3T-6 / 3T-7 / 3T-821.3 (a", 0.0)
33.9 (a', 0.2)
39.0 (a", 0.0)
46.6 (a', 0.3)
54.6 (a', 0.8)
58.2 (a", 0.0)
66.9 (a', 0.6)
71.1 (a', 0.1)
77.1 (a", 0.1)
80.0 (a', 0.1)
80.5 (a", 0.1)
81.2 (a', 0.0)
83.2 (a", 0.0)
125.0 (a', 2.0)
329.3 (a", 0.1)
335.7 (a", 0.0)
354.5 (a", 0.0)
365.8 (a', 2.1)
366.8 (a", 0.4)
386.7 (a', 0.0)
399.8 (a", 0.1)
420.5 (a", 29.4)
428.7 (a', 8.7)
440.3 (a', 14.4)
450.6 (a', 10.4)
467.9 (a', 0.9)
476.4 (a", 55.1)
508.6 (a", 5.5)
523.5 (a', 2.8)
525.2 (a", 9.5)
530.0 (a', 20.0)
545.7 (a', 7.8)
555.3 (a', 26.2)
560.0 (a', 12.4)
574.6 (a', 146.4)
1682.2 (a", 672.7)
1725.7 (a', 802.8)
1746.1 (a", 1408.1)
1774.7 (a', 169.0)
1956.2 (a', 1034.7)
1967.6 (a', 680.5)
2016.5 (a', 918.0) / 19.0 (b, 0.0)
27.3 (a, 0.0)
50.1 (a, 0.0)
56.1 (b, 0.4)
58.2 (a, 0.4)
64.4 (b, 0.1)
68.0 (a, 0.3)
72.0 (a, 0.0)
72.2 (b, 0.0)
80.7 (a, 0.0)
81.2 (b, 0.3)
86.4 (b, 0.1)
136.2 (a, 0.2)
207.7 (b, 0.8)
241.8 (b, 54.0)
296.4 (a, 0.8)
303.5 (b, 10.3)
346.2 (b, 0.1)
358.0 (a, 2.1)
373.2 (a, 1.6)
377.7 (b, 12.0)
411.3 (a, 8.9)
421.3 (b, 21.4)
439.4 (a, 0.0)
443.4 (b, 28.7)
449.0 (a, 1.9)
467.4 (b, 27.6)
502.8 (a, 14.0)
517.0 (b, 2.8)
526.6 (a, 19.8)
535.6 (b, 146.3)
539.3 (a, 0.0)
543.3 (b, 16.3)
564.2 (b, 12.5)
564.7 (a, 0.3)
1719.5 (a, 437.9)
1724.0 (b, 746.6)
1738.1 (b, 1617.4)
1760.1 (a, 979.6)
1792.6 (a, 12.7)
1996.4 (b, 1528.4)
2009.8 (a, 453.8) / 21.4 (a", 0.2)
37.9 (a", 0.1)
43.7 (a', 0.4)
59.2 (a', 0.8)
63.2 (a', 1.0)
66.2 (a", 0.1)
71.9 (a', 0.0)
75.3 (a', 0.3)
75.8 (a", 0.1)
76.6 (a", 0.3)
87.0 (a", 0.0)
109.8 (a', 0.1)
127.5 (a', 0.2)
231.4 (a', 0.7)
291.5 (a", 0.0)
297.0 (a', 2.7)
306.7 (a", 0.1)
329.2 (a", 1.7)
360.0 (a', 8.9)
383.5 (a", 0.3)
395.4 (a', 2.5)
397.4 (a", 0.9)
417.4 (a", 28.6)
433.0 (a', 19.9)
446.5 (a', 3.3)
467.5 (a', 19.6)
472.2 (a", 7.8)
496.5 (a', 64.5)
512.2 (a", 5.0)
519.5 (a', 22.7)
529.1 (a', 30.0)
532.8 (a", 8.9)
548.1 (a', 3.1)
553.9 (a', 14.1)
572.0 (a', 14.0)
1698.0 (a", 487.9)
1721.3 (a', 965.4)
1728.6 (a", 1649.4)
1755.8 (a', 704.3)
1781.6 (a', 54.7)
1897.8 (a', 670.9)
2014.4 (a', 1009.4) / 16.2 (a, 0.2)
24.7 (a, 0.1)
42.7 (a, 0.9)
55.2 (a, 0.0)
63.7 (a, 0.0)
66.4 (a, 0.4)
69.3 (a, 0.4)
72.0 (a, 0.1)
76.1 (a, 0.1)
77.5 (a, 0.0)
83.3 (a, 0.1)
91.0 (a, 0.4)
115.9 (a, 0.1)
183.5 (a, 1.1)
274.3 (a, 1.8)
306.5 (a, 0.5)
329.9 (a, 1.4)
333.1 (a, 3.2)
345.6 (a, 0.6)
359.3 (a, 3.1)
372.8 (a, 3.7)
380.3 (a, 8.2)
400.9 (a, 4.7)
410.0 (a, 4.0)
413.0 (a, 42.5)
450.4 (a, 13.8)
477.0 (a, 20.5)
501.4 (a, 76.4)
508.6 (a, 24.3)
524.6 (a, 4.7)
531.9 (a, 11.2)
548.8 (a, 14.6)
553.9 (a, 31.2)
565.3 (a, 14.9)
574.2 (a, 60.3)
1710.8 (a, 766.8)
1722.3 (a, 1242.4)
1731.0 (a, 986.6)
1748.1 (a, 899.0)
1781.9 (a, 767.9)
1963.4 (a, 564.8)
1994.7 (a, 731.3)
Table S17.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)2 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
2S-1 / 2S-2 / 2S-3 / 2S-425.0 (a, 0.5)
40.0 (a, 0.1)
50.4 (b, 1.6)
63.6 (b, 0.3)
72.8 (b, 0.8)
72.9 (a, 0.5)
77.5 (a, 0.0)
84.0 (b, 0.0)
94.9 (a, 1.7)
179.9 (a, 0.0)
188.8 (b, 4.7)
233.6 (a, 0.0)
280.8 (a, 0.0)
337.9 (b, 3.3)
359.9 (a, 0.4)
402.3 (b, 20.7)
408.6 (a, 0.2)
413.4 (b, 9.6)
446.2 (b, 0.2)
458.2 (a, 2.0)
471.3 (a, 31.1)
482.3 (b, 9.3)
485.3 (a, 1.1)
521.4 (b, 34.5)
539.3 (a, 4.1)
546.3 (b, 18.3)
571.2 (b, 1.6)
574.4 (a, 11.3)
582.2 (a, 0.2)
641.9 (b, 26.8)
1551.1 (b, 865.5)
1554.9 (a, 7.9)
1743.8 (b, 1334.1)
1761.6 (a, 1089.5)
1968.8 (b, 1231.1)
1991.6 (a, 988.6) / 27.6 (au, 1.2)
32.8 (au, 0.2)
52.6 (au, 2.6)
64.6 (ag, 0.0)
77.3 (ag, 0.0)
78.6 (ag, 0.0)
81.6 (ag, 0.0)
83.3 (au, 0.7)
98.0 (au, 2.0)
173.5 (ag, 0.0)
185.8 (au, 4.3)
231.4 (ag, 0.0)
305.6 (au, 3.6)
343.8 (ag, 0.0)
366.6 (au, 2.4)
385.9 (ag, 0.0)
407.0 (au, 23.2)
410.7 (ag, 0.0)
454.3 (au, 41.0)
482.8 (au, 19.2)
484.3 (ag, 0.0)
492.5 (ag, 0.0)
500.7 (au, 2.1)
531.8 (au, 60.6)
536.1 (ag, 0.0)
544.1 (ag, 0.0)
562.3 (ag, 0.0)
566.6 (au, 4.9)
606.7 (ag, 0.0)
626.2 (au, 41.3)
1549.5 (au, 870.6)
1555.9 (ag, 0.0)
1751.0 (au, 2297.4)
1763.2 (ag, 0.0)
1966.5 (au, 2341.8)
1987.3 (ag, 0.0) / 33.8 (a, 0.1)
43.3 (a, 0.0)
63.5 (a, 0.2)
68.8 (a, 0.5)
74.9 (a, 1.5)
81.7 (a, 0.5)
83.5 (a, 0.1)
91.7 (a, 0.2)
101.7 (a, 2.0)
143.8 (a, 10.2)
170.1 (a, 5.4)
228.5 (a, 1.6)
311.5 (a, 0.9)
361.9 (a, 6.3)
371.8 (a, 6.4)
398.5 (a, 3.1)
415.0 (a, 10.4)
438.1 (a, 10.0)
452.5 (a, 19.4)
460.4 (a, 27.3)
477.6 (a, 0.0)
509.2 (a, 42.0)
517.1 (a, 6.2)
532.9 (a, 30.2)
559.0 (a, 28.9)
564.8 (a, 0.4)
576.9 (a, 104.9)
581.3 (a, 7.5)
611.2 (a, 1.0)
654.0 (a, 67.7)
1344.4 (a, 286.1)
1584.1 (a, 427.6)
1766.9 (a, 1263.1)
1778.8 (a, 579.4)
1979.9 (a, 1864.0)
1993.7 (a, 113.4) / 28.6 (a", 0.2)
43.0 (a", 0.2)
53.0 (a', 0.5)
55.0 (a", 0.1)
73.3 (a', 0.3)
75.3 (a", 0.2)
76.9 (a', 0.4)
84.2 (a', 0.0)
96.9 (a", 1.0)
178.7 (a', 1.0)
195.2 (a', 0.0)
231.1 (a', 0.1)
265.8 (a", 0.4)
333.0 (a', 0.6)
336.2 (a", 0.2)
390.0 (a", 2.5)
424.4 (a', 12.6)
427.2 (a", 1.0)
433.7 (a', 6.4)
482.1 (a', 23.4)
485.8 (a", 0.1)
487.9 (a', 54.3)
496.0 (a', 9.1)
501.9 (a", 38.7)
517.3 (a", 6.5)
547.5 (a", 9.5)
549.9 (a', 1.3)
574.0 (a', 6.9)
620.7 (a', 66.1)
670.0 (a', 120.7)
1519.0 (a', 554.0)
1567.2 (a', 262.7)
1736.6 (a", 1006.8)
1778.9 (a', 1133.6)
1943.3 (a", 1022.8)
1987.3 (a', 1073.0)
Table S18.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)2 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
2S-5 / 2S-6 / 2S-722.4 (a, 0.0)
34.8 (a, 0.1)
37.6 (b, 0.4)
58.4 (b, 0.5)
59.7 (a, 0.1)
73.8 (b, 0.4)
75.6 (b, 0.0)
78.2 (a, 0.0)
80.7 (a, 0.2)
82.2 (b, 1.0)
82.8 (a, 0.5)
159.1 (a, 0.2)
330.4 (a, 0.1)
332.7 (b, 0.5)
342.1 (a, 2.1)
360.3 (b, 28.1)
378.4 (a, 0.8)
393.7 (b, 6.8)
397.9 (b, 12.9)
412.0 (a, 4.6)
443.2 (a, 20.7)
446.1 (b, 3.0)
464.3 (b, 107.8)
497.0 (a, 0.1)
531.1 (a, 10.1)
559.4 (b, 0.5)
562.4 (a, 1.5)
565.0 (b, 4.8)
612.9 (a, 0.0)
620.0 (b, 7.8)
1716.2 (b, 970.8)
1722.0 (a, 569.1)
1740.5 (b, 1039.9)
1764.6 (a, 872.4)
1985.4 (b, 1600.3)
1998.6 (a, 466.9) / 13.5 (au, 0.1)
36.6 (au, 0.1)
43.9 (bg, 0.0)
47.7 (bu, 1.3)
68.9 (ag, 0.0)
72.5 (bg, 0.0)
73.9 (au, 0.4)
75.0 (ag, 0.0)
78.3 (bu, 1.7)
169.8 (bu, 0.1)
173.4 (ag, 0.0)
199.3 (ag, 0.0)
294.4 (au, 3.9)
307.2 (ag, 0.0)
321.2 (au, 0.2)
333.4 (bg, 0.0)
335.2 (bu, 39.9)
387.9 (bg, 0.0)
391.4 (bu, 206.4)
442.1 (ag, 0.0)
454.1 (au, 37.9)
469.4 (bu, 13.6)
494.0 (ag, 0.0)
520.8 (bg, 0.0)
539.7 (ag, 0.0)
544.0 (au, 18.3)
545.4 (bg, 0.0)
550.6 (bu, 20.7)
556.4 (ag, 0.0)
569.0 (bu, 49.5)
1734.2 (bg, 0.0)
1744.0 (au, 2128.8)
1770.5 (bu, 1858.4)
1778.5 (ag, 0.0)
1837.5 (bu, 1122.1)
1837.7 (ag, 0.0) / 24.3 (au, 1.8)
38.6 (au, 0.0)
58.9 (bg, 0.0)
61.0 (bu, 1.5)
66.0 (ag, 0.0)
73.6 (bu, 2.0)
79.7 (ag, 0.0)
87.8 (bg, 0.0)
94.7 (au, 0.1)
143.1 (bu, 3.4)
143.1 (ag, 0.0)
164.7 (ag, 0.0)
205.8 (au, 7.5)
235.8 (bg, 0.0)
315.1 (au, 12.9)
322.6 (ag, 0.0)
365.6 (bg, 0.0)
410.0 (bu, 84.6)
420.0 (bg, 0.0)
494.8 (bu, 79.6)
497.7 (au, 45.2)
500.0 (ag, 0.0)
530.9 (bu, 170.2)
540.5 (bg, 0.0)
544.0 (au, 0.9)
552.1 (ag, 0.0)
560.5 (bu, 7.8)
566.8 (ag, 0.0)
601.0 (ag, 0.0)
606.4 (bu, 126.3)
1718.9 (bg, 0.0)
1723.6 (au, 2181.9)
1729.4 (bu, 2240.5)
1752.6 (ag, 0.0)
1788.9 (bu, 819.3)
1820.4 (ag, 0.0)
Table S19.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)2using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
2T-1 / 2T-2 / 2T-3 / 2T-4 / 2T-533.6 (a', 0.1)
39.6 (a", 0.0)
56.1 (a', 0.1)
64.0 (a", 0.0)
70.1 (a', 0.3)
72.7 (a", 0.1)
75.1 (a', 0.1)
78.9 (a", 0.0)
96.9 (a', 1.3)
188.4 (a', 0.0)
204.0 (a", 0.0)
238.4 (a", 2.2)
295.6 (a', 1.0)
322.1 (a", 0.0)
351.6 (a', 0.8)
397.6 (a", 5.4)
404.0 (a', 6.1)
411.6 (a", 4.9)
429.7 (a', 3.6)
433.2 (a", 6.0)
455.6 (a', 1.1)
465.0 (a', 16.7)
484.7 (a', 5.3)
498.1 (a', 9.8)
502.7 (a", 5.4)
539.1 (a", 23.6)
544.2 (a', 9.5)
553.0 (a', 10.3)
559.7 (a", 39.4)
638.7 (a", 133.4)
1486.1 (a', 460.2)
1559.9 (a', 301.8)
1730.3 (a", 967.6)
1745.1 (a', 1023.8)
1962.6 (a", 980.2)
1988.2 (a', 1013.4) / 14.6 (au, 0.1)
39.9 (au, 0.3)
50.9 (au, 0.2)
52.9 (ag, 0.0)
72.1 (ag, 0.0)
76.6 (ag, 0.0)
77.3 (ag, 0.0)
82.1 (au, 0.1)
90.6 (au, 2.1)
192.1 (ag, 0.0)
201.0 (au, 0.4)
236.6 (ag, 0.0)
317.6 (ag, 0.0)
318.7 (au, 0.3)
332.3 (au, 5.3)
357.6 (au, 5.1)
383.4 (ag, 0.0)
407.5 (ag, 0.0)
428.8 (ag, 0.0)
434.6 (au, 23.5)
456.5 (ag, 0.0)
467.5 (au, 19.2)
476.4 (au, 9.9)
478.3 (ag, 0.0)
511.3 (ag, 0.0)
532.6 (ag, 0.0)
540.2 (au, 30.0)
560.2 (au, 11.4)
564.8 (ag, 0.0)
662.3 (au, 145.5)
1504.4 (au, 709.4)
1523.2 (ag, 0.0)
1735.4 (au, 1864.9)
1741.7 (ag, 0.0)
1974.8 (au, 2294.4)
1990.0 (ag, 0.0) / 31.2 (au, 0.1)
35.1 (bu, 0.7)
57.1 (au, 0.0)
57.4 (ag, 0.0)
64.8 (bu, 1.4)
66.9 (bg, 0.0)
67.4 (ag, 0.0)
72.0 (bu, 0.8)
73.4 (au, 0.3)
74.7 (bg, 0.0)
75.6 (ag, 0.0)
183.7 (ag, 0.0)
321.8 (bg, 0.0)
333.0 (au, 0.0)
334.2 (bu, 47.9)
351.4 (bg, 0.0)
362.4 (ag, 0.0)
374.5 (au, 7.6)
426.9 (au, 5.8)
427.1 (ag, 0.0)
434.9 (bg, 0.0)
435.6 (bu, 22.8)
490.5 (bu, 95.0)
495.3 (ag, 0.0)
500.8 (au, 32.2)
511.6 (bu, 23.0)
520.7 (ag, 0.0)
524.7 (bg, 0.0)
563.9 (bu, 2.6)
570.9 (ag, 0.0)
1673.7 (bg, 0.0)
1693.7 (au, 2224.2)
1715.8 (bu, 1315.7)
1748.2 (ag, 0.0)
1982.1 (bu, 1926.8)
1990.3 (ag, 0.0) / 26.0 (a", 0.2)
49.4 (a", 0.0)
56.8 (a', 0.8)
61.7 (a", 0.0)
69.8 (a', 0.1)
74.0 (a', 0.0)
74.4 (a", 0.3)
80.9 (a', 0.3)
97.8 (a", 1.5)
175.0 (a", 1.1)
182.8 (a', 0.2)
196.1 (a', 0.5)
238.8 (a', 0.7)
293.2 (a", 0.2)
306.4 (a", 0.7)
359.6 (a', 3.0)
382.7 (a', 3.8)
384.1 (a", 0.5)
405.3 (a', 14.9)
421.1 (a", 0.0)
435.4 (a', 9.1)
473.5 (a", 1.3)
474.7 (a', 1.3)
489.0 (a", 10.2)
498.7 (a', 8.9)
505.6 (a', 0.1)
506.9 (a", 15.6)
540.6 (a', 0.1)
557.1 (a', 30.0)
671.6 (a', 82.6)
1485.3 (a', 546.8)
1564.4 (a', 240.5)
1684.2 (a", 884.0)
1717.1 (a', 1003.0)
1946.8 (a", 1016.5)
1989.4 (a', 1105.1) / 25.8 (a", 0.0)
28.4 (a", 0.2)
51.0 (a', 1.1)
60.1 (a", 0.0)
61.1 (a', 0.5)
65.7 (a', 0.2)
73.3 (a", 0.0)
76.6 (a', 0.0)
81.5 (a", 0.7)
132.4 (a', 0.2)
160.1 (a', 0.2)
216.8 (a', 0.2)
261.8 (a", 2.2)
288.1 (a", 0.3)
320.7 (a', 1.2)
326.6 (a", 1.2)
359.9 (a', 6.5)
370.7 (a", 1.9)
418.1 (a', 0.7)
425.2 (a", 19.5)
448.0 (a', 19.4)
458.2 (a", 2.0)
477.1 (a', 1.0)
492.7 (a', 22.1)
517.4 (a', 2.4)
520.8 (a", 5.4)
537.0 (a", 7.6)
543.9 (a', 2.3)
560.9 (a', 24.6)
582.5 (a', 24.3)
1705.1 (a", 483.0)
1723.0 (a', 1917.9)
1728.7 (a", 1472.4)
1751.2 (a', 337.7)
1810.9 (a', 743.2)
1824.5 (a', 292.0)
Table S20.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
S-1 / S-2 / S-3 / S-424.8 (a, 0.1)
41.6 (a, 0.2)
51.1 (a, 0.8)
60.7 (a, 0.4)
77.4 (a, 0.3)
79.6 (a, 0.4)
82.3 (a, 0.2)
84.4 (a, 0.5)
95.4 (a, 1.1)
169.7 (a, 1.2)
311.7 (a, 0.1)
325.0 (a, 0.3)
351.8 (a, 1.6)
358.2 (a, 2.3)
374.2 (a, 11.1)
430.4 (a, 8.3)
453.8 (a, 14.5)
480.8 (a, 8.7)
526.1 (a, 40.6)
545.7 (a, 10.6)
560.3 (a, 4.0)
577.9 (a, 2.4)
581.5 (a, 0.7)
617.3 (a, 1.6)
652.0 (a, 7.0)
1697.1 (a, 789.9)
1721.8 (a, 577.7)
1732.0 (a, 1414.3)
1764.6 (a, 604.4)
1996.6 (a, 873.6) / 40.2 (a', 0.1)
46.3 (a", 0.0)
58.5 (a", 0.2)
67.8 (a", 0.9)
68.5 (a', 1.9)
80.1 (a', 0.6)
92.1 (a', 2.1)
189.7 (a', 2.1)
211.3 (a', 0.1)
220.2 (a", 0.0)
298.7 (a", 1.8)
336.1 (a", 0.1)
345.9 (a', 2.7)
409.8 (a", 0.3)
438.1 (a', 3.7)
462.2 (a', 2.3)
471.5 (a', 16.3)
474.8 (a", 2.1)
504.1 (a', 11.7)
514.6 (a", 0.0)
553.2 (a', 23.8)
580.7 (a', 2.4)
584.8 (a', 2.0)
602.3 (a", 3.1)
654.3 (a', 3.6)
1526.9 (a", 926.8)
1531.7 (a', 12.4)
1716.8 (a', 1070.0)
1747.2 (a', 977.7)
1974.1 (a', 1105.4) / 43.5 (a', 0.6)
46.9 (a", 0.5)
48.9 (a", 0.5)
68.6 (a', 1.8)
74.6 (a", 0.1)
86.3 (a', 0.5)
89.1 (a', 1.5)
184.8 (a', 3.3)
186.2 (a", 0.1)
212.7 (a', 1.2)
319.6 (a", 2.6)
363.5 (a', 7.6)
375.7 (a", 1.3)
422.9 (a", 17.2)
434.5 (a", 0.7)
443.3 (a', 7.0)
470.7 (a', 22.4)
479.6 (a", 2.6)
481.4 (a', 5.9)
525.6 (a', 3.6)
566.1 (a', 21.8)
583.9 (a', 2.2)
590.1 (a', 7.6)
596.6 (a", 31.3)
672.0 (a', 69.1)
1513.9 (a", 868.0)
1523.2 (a', 78.7)
1727.1 (a', 1074.3)
1750.1 (a', 666.2)
1975.3 (a', 897.4) / -14.9 (a", 0.4)
42.3 (a", 0.0)
47.7 (a', 1.1)
61.5 (a", 0.0)
76.4 (a', 0.6)
79.9 (a', 0.1)
80.2 (a", 0.1)
84.7 (a', 0.3)
110.2 (a', 0.2)
209.6 (a', 0.7)
276.3 (a", 1.1)
320.8 (a', 5.1)
327.1 (a", 0.8)
333.8 (a", 6.2)
387.9 (a', 146.4)
391.5 (a", 0.4)
450.4 (a", 26.5)
471.8 (a', 52.0)
499.3 (a', 4.9)
527.7 (a', 44.9)
541.2 (a", 5.3)
552.4 (a', 15.0)
559.3 (a", 2.2)
570.7 (a', 23.6)
591.6 (a', 2.5)
1714.2 (a", 28.8)
1730.9 (a", 1929.6)
1753.1 (a', 1296.9)
1778.0 (a', 501.4)
1865.4 (a', 536.5)
Table S21.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
S-5 / S-6 / S-78.2 (a, 0.2)
37.5 (a, 0.5)
48.0 (a, 0.2)
63.9 (a, 0.0)
70.8 (a, 0.1)
74.4 (a, 0.4)
80.5 (a, 0.6)
88.5 (a, 0.4)
103.5 (a, 0.6)
191.4 (a, 4.3)
308.8 (a, 1.0)
331.0 (a, 1.0)
343.7 (a, 6.1)
395.9 (a, 2.2)
413.5 (a, 11.5)
443.7 (a, 10.2)
470.4 (a, 89.2)
509.9 (a, 69.8)
523.6 (a, 29.4)
529.9 (a, 1.2)
533.3 (a, 1.3)
540.9 (a, 47.8)
551.6 (a, 0.3)
564.3 (a, 12.0)
618.3 (a, 1.1)
1702.8 (a, 930.1)
1714.6 (a, 854.9)
1750.2 (a, 1215.1)
1776.0 (a, 624.9)
1963.4 (a, 780.5) / 39.4 (a', 0.1)
45.0 (a", 0.1)
58.9 (a", 0.4)
65.8 (a", 0.2)
69.5 (a', 3.4)
81.9 (a', 0.0)
97.0 (a', 1.7)
192.7 (a', 5.2)
211.1 (a', 0.3)
217.5 (a", 0.0)
270.5 (a", 0.1)
323.8 (a', 1.9)
369.7 (a", 1.4)
377.5 (a', 77.9)
409.0 (a", 0.0)
431.4 (a', 10.6)
447.9 (a", 0.6)
478.2 (a", 0.9)
489.9 (a', 11.1)
499.7 (a', 24.7)
517.2 (a', 20.5)
543.7 (a', 4.7)
564.3 (a', 3.8)
653.9 (a", 16.6)
736.1 (a', 65.9)
1512.6 (a", 871.3)
1529.6 (a', 36.0)
1729.2 (a', 947.5)
1771.1 (a', 1052.9)
1926.3 (a', 1039.7) / 26.5 (a", 0.0)
30.6 (a", 0.1)
41.4 (a', 0.1)
57.3 (a', 0.1)
63.6 (a', 0.5)
68.3 (a', 0.1)
71.7 (a", 0.1)
73.7 (a", 0.1)
85.3 (a', 0.1)
205.1 (a', 0.6)
287.6 (a', 7.1)
344.9 (a', 4.8)
348.6 (a", 0.1)
351.7 (a", 0.2)
394.7 (a", 12.8)
425.2 (a", 19.0)
427.1 (a', 28.6)
446.7 (a', 15.4)
481.5 (a", 38.7)
508.1 (a', 2.6)
519.9 (a", 0.1)
538.6 (a', 21.8)
546.7 (a', 1.4)
565.4 (a', 0.8)
581.3 (a', 1.1)
1716.3 (a", 1165.1)
1733.4 (a', 698.7)
1748.8 (a', 1306.0)
1790.0 (a', 470.5)
1979.0 (a', 887.7)
Table S22.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
T-1 / T-2 / T-3 / T-4 / T-521.5 (a, 0.3)
42.4 (a, 0.2)
54.3 (a, 0.1)
61.2 (a, 1.2)
66.0 (a, 0.5)
77.3 (a, 0.4)
80.4 (a, 0.0)
83.7 (a, 0.2)
90.9 (a, 0.7)
167.0 (a, 1.4)
285.1 (a, 8.1)
296.6 (a, 0.3)
322.3 (a, 17.2)
348.8 (a, 2.0)
352.6 (a, 2.0)
396.1 (a, 8.9)
416.8 (a, 12.3)
462.8 (a, 6.6)
488.7 (a, 17.1)
508.5 (a, 49.8)
513.3 (a, 8.1)
551.9 (a, 3.6)
560.9 (a, 1.3)
568.0 (a, 3.7)
632.1 (a, 3.6)
1681.4 (a, 647.9)
1686.2 (a, 1009.8)
1711.9 (a, 1479.4)
1745.2 (a, 326.6)
1960.1 (a, 814.9) / 14.4 (a", 0.4)
44.5 (a', 0.9)
53.9 (a", 0.0)
56.7 (a', 0.4)
69.1 (a', 0.5)
69.6 (a", 0.0)
71.9 (a", 0.1)
80.5 (a', 0.0)
96.0 (a', 0.2)
195.9 (a', 0.6)
276.1 (a", 0.3)
288.7 (a", 0.0)
325.9 (a', 4.5)
328.9 (a", 1.4)
361.4 (a", 0.0)
411.6 (a", 29.0)
458.7 (a', 37.5)
475.6 (a', 25.1)
483.5 (a', 2.8)
503.5 (a", 8.0)
511.5 (a', 6.9)
537.4 (a', 9.1)
549.9 (a", 1.4)
554.3 (a', 8.7)
604.6 (a', 5.5)
1687.0 (a", 198.1)
1708.4 (a', 1164.2)
1712.8 (a", 1629.1)
1755.7 (a', 573.3)
1899.1 (a', 669.9) / 26.7 (a, 0.2)
41.6 (a, 0.9)
57.5 (a, 0.7)
63.8 (a, 0.2)
72.3 (a, 0.3)
76.0 (a, 0.1)
90.7 (a, 1.8)
182.8 (a, 0.6)
191.9 (a, 0.5)
228.3 (a, 1.0)
317.5 (a, 2.4)
332.9 (a, 4.8)
340.2 (a, 1.4)
381.8 (a, 3.0)
403.8 (a, 5.4)
432.1 (a, 10.4)
447.3 (a, 3.0)
461.7 (a, 20.1)
482.6 (a, 10.7)
502.9 (a, 1.5)
506.9 (a, 14.1)
554.8 (a, 3.4)
561.0 (a, 2.5)
568.8 (a, 7.3)
646.3 (a, 39.4)
1503.3 (a, 555.9)
1531.6 (a, 245.4)
1712.1 (a, 1368.8)
1748.3 (a, 859.7)
1974.7 (a, 1109.6) / 26.8 (a, 0.8)
36.3 (a, 1.2)
49.8 (a, 0.1)
56.0 (a, 0.1)
77.6 (a, 0.0)
81.6 (a, 0.0)
88.2 (a, 1.2)
178.8 (a, 0.1)
186.2 (a, 0.3)
223.3 (a, 0.1)
318.6 (a, 1.9)
330.0 (a, 1.8)
343.0 (a, 5.1)
379.9 (a, 6.7)
390.8 (a, 8.2)
412.5 (a, 4.4)
442.4 (a, 4.8)
465.7 (a, 11.2)
481.7 (a, 2.7)
487.7 (a, 3.7)
497.2 (a, 27.7)
546.0 (a, 6.9)
570.7 (a, 6.4)
584.5 (a, 3.0)
627.8 (a, 41.6)
1506.7 (a, 783.1)
1520.5 (a, 13.3)
1727.9 (a, 1763.4)
1749.7 (a, 463.1)
1971.1 (a, 1007.6) / 13.3 (a", 0.1)
30.3 (a", 0.8)
30.4 (a', 0.4)
54.3 (a', 0.4)
59.8 (a", 0.4)
62.0 (a', 0.1)
65.2 (a", 0.0)
70.0 (a', 0.1)
89.4 (a', 0.3)
160.0 (a', 5.9)
310.4 (a", 0.2)
312.1 (a", 0.0)
325.4 (a', 0.6)
390.1 (a', 2.2)
409.9 (a", 0.2)
439.3 (a", 0.0)
492.7 (a', 51.5)
493.2 (a", 44.7)
508.7 (a', 27.4)
517.1 (a", 18.0)
519.2 (a', 4.7)
529.1 (a', 9.3)
544.3 (a', 0.5)
567.8 (a', 14.2)
627.9 (a', 0.7)
1704.7 (a', 840.4)
1710.5 (a", 1112.5)
1747.6 (a', 1215.6)
1766.7 (a', 176.8)
1962.3 (a', 718.3)
Table S23.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
0S-1 / 0S-219.8 (a, 0.4)
61.9 (b, 3.0)
64.1 (a, 0.0)
79.5 (b, 0.9)
83.1 (a, 0.0)
90.2 (b, 1.3)
96.0 (a, 0.7)
176.4 (a, 0.2)
312.0 (a, 2.9)
316.5 (b, 1.0)
351.1 (a, 3.2)
358.0 (b, 2.7)
462.1 (a, 1.1)
507.8 (b, 7.3)
572.7 (b, 0.4)
575.1 (a, 0.1)
584.8 (a, 0.2)
585.9 (b, 0.1)
659.4 (a, 0.1)
660.8 (b, 1.6)
1682.1 (b, 710.9)
1693.8 (a, 869.8)
1712.3 (b, 1241.7)
1753.2 (a, 385.0) / 52.9 (a1, 0.0)
58.1 (a2, 0.0)
71.6 (b1, 2.7)
78.6 (b2, 2.2)
90.6 (a1, 2.2)
186.1 (b1, 0.1)
215.2 (a2, 0.0)
230.5 (a1, 1.4)
281.7 (b2, 7.9)
284.7 (a2, 0.0)
365.3 (a1, 2.1)
453.1 (b2, 0.7)
464.5 (a1, 1.4)
481.0 (b1, 21.7)
573.5 (a1, 0.0)
579.1 (a2, 0.0)
594.0 (b1, 4.8)
601.8 (a1, 0.4)
606.6 (b2, 0.0)
616.2 (b1, 12.1)
1510.8 (a1, 38.8)
1513.9 (b2, 955.8)
1700.3 (b1, 808.0)
1734.7 (a1, 837.9)
Table S24.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).
0T-1 / 0T-2 / 0T-3 / 0T-416.5 (a", 0.7)
29.1 (a', 2.0)
54.2 (a", 0.0)
64.0 (a", 0.0)
78.8 (a', 1.1)
82.2 (a', 0.7)
96.9 (a', 0.0)
184.0 (a', 0.2)
254.8 (a', 18.7)
265.8 (a", 0.1)
296.2 (a", 0.0)
302.5 (a", 0.0)
337.4 (a", 11.3)
497.2 (a', 10.7)
509.3 (a', 50.6)
550.3 (a", 0.2)
561.2 (a", 0.1)
579.3 (a', 0.1)
605.0 (a', 13.6)
624.4 (a', 0.5)
1673.5 (a", 3.0)
1693.2 (a", 1678.4)
1704.7 (a', 1769.1)
1736.1 (a', 0.1) / 27.2 (au, 1.4)
45.5 (au, 2.6)
68.9 (ag, 0.0)
81.2 (au, 1.9)
89.5 (ag, 0.0)
158.8 (au, 1.6)
178.1 (ag, 0.0)
194.4 (ag, 0.0)
282.5 (au, 3.4)
364.3 (ag, 0.0)
373.9 (ag, 0.0)
376.1 (au, 11.9)
463.1 (ag, 0.0)
473.2 (au, 3.5)
500.6 (ag, 0.0)
511.1 (au, 2.3)
572.3 (ag, 0.0)
587.2 (au, 3.3)
611.0 (ag, 0.0)
647.9 (au, 27.5)
1508.0 (au, 816.1)
1517.2 (ag, 0.0)
1726.0 (au, 2318.6)
1747.0 (ag, 0.0) / 28.6 (a', 0.9)
50.1 (a', 0.1)
54.1 (a", 3.8)
65.3 (a", 0.2)
88.7 (a', 3.9)
201.3 (a", 0.7)
205.4 (a', 2.5)
229.2 (a", 0.0)
272.5 (a', 1.1)
363.7 (a', 4.2)
380.4 (a", 0.0)
421.7 (a', 1.2)
450.7 (a", 22.1)
485.1 (a', 2.9)
498.2 (a', 1.3)
552.2 (a", 5.0)
562.1 (a", 1.8)
562.3 (a', 0.3)
581.8 (a', 1.6)
666.9 (a", 25.9)
1489.4 (a', 840.7)
1510.3 (a', 36.9)
1696.1 (a", 1252.7)
1725.6 (a', 736.9) / 25.8 (au, 2.5)
37.6 (bg, 0.0)
57.4 (bu, 3.4)
63.9 (au, 4.3)
85.5 (ag, 0.0)
139.9 (ag, 0.0)
176.9 (bu, 0.6)
214.3 (ag, 0.0)
328.4 (bg, 0.0)
339.7 (ag, 0.0)
348.2 (au, 0.1)
418.1 (bu, 4.9)
458.4 (bg, 0.0)
461.6 (au, 9.4)
526.4 (ag, 0.0)
550.5 (bu, 12.1)
575.4 (ag, 0.0)
589.2 (bu, 0.1)
631.1 (bu, 0.9)
677.1 (ag, 0.0)
1516.1 (ag, 0.0)
1521.0 (bu, 716.2)
1745.2 (bu, 2378.7)
1768.4 (ag, 0.0)
Table S25.Theoretical Cartesian coordinates (in Å) for the structure 4S-1using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.876195 1.223452 0.000000
2 75 -0.876195 -1.223452 0.000000
3 8 3.011532 -1.081593 0.000000
4 8 -3.115842 -3.396359 0.000000
5 8 0.231112 -1.848137 2.721458
6 8 3.115842 3.396359 0.000000
7 8 -0.231112 1.848137 2.721458
8 8 -3.011532 1.081593 0.000000
9 8 -0.231112 1.848137 -2.721458
10 8 0.231112 -1.848137 -2.721458
11 7 -0.231112 -1.587306 -1.675278
12 7 -0.231112 -1.587306 1.675278
13 7 0.231112 1.587306 1.675278
14 7 0.231112 1.587306 -1.675278
15 6 -2.289601 -2.595654 0.000000
16 6 -2.226454 0.239926 0.000000
17 6 2.226454 -0.239926 0.000000
18 6 2.289601 2.595654 0.000000
------
Table S26.Theoretical Cartesian coordinates (in Å) for the structure 4S-2using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 0.000000 2.013595 -1.288672
2 6 -1.414520 0.000000 -2.660646
3 6 1.414520 0.000000 -2.660646
4 6 0.000000 -2.013595 -1.288672
5 8 0.000000 3.159594 -1.298638
6 8 -2.252543 0.000000 -3.450155
7 8 2.252543 0.000000 -3.450155
8 8 2.719860 0.000000 0.320814
9 8 0.000000 2.351135 3.430828
10 8 0.000000 -3.159594 -1.298638
11 8 0.000000 -2.351135 3.430828
12 8 -2.719860 0.000000 0.320814
13 75 0.000000 0.000000 -1.310901
14 75 0.000000 0.000000 1.594729
15 7 0.000000 1.492009 2.622435
16 7 0.000000 -1.492009 2.622435
17 7 1.520534 0.000000 0.381788
18 7 -1.520534 0.000000 0.381788
------
Table S27. Theoretical Cartesian coordinates (in Å) for the structure 4S-3using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.099363 1.508685 -0.051616
2 75 0.099363 -1.508685 -0.051616
3 8 -0.600954 4.586168 0.061618
4 8 -1.674246 0.990139 -2.556462
5 8 -2.879332 -1.601587 0.310704
6 8 1.674246 -0.990139 -2.556462
7 8 -1.710497 1.036068 2.603553
8 8 1.710497 -1.036068 2.603553
9 8 2.879332 1.601587 0.310704
10 8 0.600954 -4.586168 0.061618
11 6 -1.121243 1.212895 1.630763
12 6 -0.415842 3.450872 0.026319
13 6 1.121243 -1.212895 1.630763
14 6 0.415842 -3.450872 0.026319
15 7 -1.710497 -1.574035 0.211843
16 7 1.094690 -1.196234 -1.558498
17 7 1.710497 1.574035 0.211843
18 7 -1.094690 1.196234 -1.558498
------
Table S28. Theoretical Cartesian coordinates (in Å) for the structure 4S-4using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.000000 0.000000 1.445904
2 75 0.000000 0.000000 -1.445904
3 8 2.561759 0.000000 2.986796
4 8 0.000000 3.112687 0.879847
5 8 -3.112687 0.000000 -0.879847
6 8 3.112687 0.000000 -0.879847
7 8 -2.561759 0.000000 2.986796
8 8 0.000000 -2.561759 -2.986796
9 8 0.000000 -3.112687 0.879847
10 8 0.000000 2.561759 -2.986796
11 6 0.000000 1.979698 1.073812
12 6 1.979698 0.000000 -1.073812
13 7 0.000000 1.607144 -2.301525
14 7 0.000000 -1.607144 -2.301525
15 7 -1.607144 0.000000 2.301525
16 7 1.607144 0.000000 2.301525
17 6 0.000000 -1.979698 1.073812
18 6 -1.979698 0.000000 -1.073812
------
Table S29. Theoretical Cartesian coordinates (in Å) for the structure 4S-5using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 8 -0.069639 -3.079122 2.530808
2 8 -2.976282 1.959375 0.000000
3 8 3.061292 -1.013407 0.000000
4 8 0.593075 4.560896 0.000000
5 8 1.153174 0.990591 2.785007
6 8 -0.069639 -3.079122 -2.530808
7 8 1.153174 0.990591 -2.785007
8 8 -3.203755 -1.090937 0.000000
9 75 -0.069520 -1.501845 0.000000
10 75 0.112381 1.476386 0.000000
11 7 -0.069639 -2.362835 1.600676
12 7 -0.069639 -2.362835 -1.600676
13 7 0.719988 1.178167 -1.708685
14 7 0.719988 1.178167 1.708685
15 6 -2.064425 -1.224231 0.000000
16 6 -1.841339 1.754829 0.000000
17 6 1.928635 -1.192084 0.000000
18 6 0.402017 3.425455 0.000000
------
Table S30. Theoretical Cartesian coordinates (in Å) for the structure 4S-6using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -1.409589 -1.026596 1.413713
2 6 -1.409589 -1.026596 -1.413713
3 6 1.404900 -0.960394 1.409084
4 6 1.404900 -0.960394 -1.409084
5 8 -2.212009 -0.874050 2.217546
6 8 -2.212009 -0.874050 -2.217546
7 8 2.198477 -0.770362 2.214493
8 8 2.817192 2.465842 0.000000
9 8 -1.437268 2.431552 2.445523
10 8 2.198477 -0.770362 -2.214493
11 8 -1.437268 2.431552 -2.445523
12 8 0.067199 -4.356919 0.000000
13 75 0.006033 -1.372472 0.000000
14 75 -0.005399 1.470961 0.000000
15 7 -0.880579 1.967004 1.510204
16 7 -0.880579 1.967004 -1.510204
17 7 1.741581 1.972389 0.000000
18 7 0.040481 -3.193312 0.000000
------
Table S31. Theoretical Cartesian coordinates (in Å) for the structure 4S-7using
the BP86/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 8 -0.170212 3.469646 2.333669
2 8 2.406941 -0.103979 1.108398
3 8 -2.406941 0.103979 1.108398
4 8 -2.232468 -2.879099 -1.546054
5 8 0.170212 -3.469646 2.333669
6 8 -2.253967 2.688437 -1.742259
7 8 2.253967 -2.688437 -1.742259
8 8 2.232468 2.879099 -1.546054
9 75 0.086648 1.464371 -0.023184
10 75 -0.086648 -1.464371 -0.023184
11 7 -1.393584 -2.321402 -0.959506
12 7 1.393584 2.321402 -0.959506
13 6 1.393584 -2.271752 -1.104843
14 6 0.098454 -2.725870 1.458287
15 6 -0.098454 2.725870 1.458287
16 6 -1.393584 2.271752 -1.104843
17 7 1.255258 -0.054972 0.729231
18 7 -1.255258 0.054972 0.729231
------
Table S32. Theoretical Cartesian coordinates (in Å) for the structure 4S-8using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.032269 1.432453 0.000000
2 75 -0.061496 -1.434421 0.000000
3 6 -0.079753 -1.335198 2.021127
4 6 1.896169 -1.127425 0.000000
5 8 -1.939174 3.851866 0.000000
6 8 -0.090096 -1.277307 -3.164539
7 8 -0.090096 -1.277307 3.164539
8 8 -2.710081 0.066356 0.000000
9 8 1.400919 2.096735 -2.582452
10 8 -0.791333 -4.337884 0.000000
11 8 1.400919 2.096735 2.582452
12 8 3.043615 -1.014204 0.000000
13 7 -1.503636 0.094317 0.000000
14 7 -0.562410 -3.188143 0.000000
15 6 -1.203250 2.968900 0.000000
16 6 -0.079753 -1.335198 -2.021127
17 7 0.832603 1.795570 -1.595064
18 7 0.832603 1.795570 1.595064
------
Table S33. Theoretical Cartesian coordinates (in Å) for the structure 4S-9using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.000000 1.461994 -0.078168
2 75 0.000000 -1.461994 -0.078168
3 6 -1.432832 -2.001961 1.202343
4 6 1.432832 2.001961 1.202343
5 6 -1.432832 2.001961 1.202343
6 6 1.432832 -2.001961 1.202343
7 8 0.000000 3.893068 -1.787029
8 8 2.330718 0.000000 -1.383449
9 8 -2.280030 -2.283044 1.926974
10 8 -2.330718 0.000000 -1.383449
11 8 2.280030 2.283044 1.926974
12 8 0.000000 -3.893068 -1.787029
13 8 -2.280030 2.283044 1.926974
14 8 2.280030 -2.283044 1.926974
15 7 1.226898 0.000000 -0.889240
16 7 -1.226898 0.000000 -0.889240
17 7 0.000000 2.937425 -1.115520
18 7 0.000000 -2.937425 -1.115520
------
Table S34. Theoretical Cartesian coordinates (in Å) for the structure 4S-10 using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -0.013772 1.292987 2.019989
2 6 -0.328966 3.328511 0.000000
3 6 -0.013772 1.292987 -2.019989
4 8 -0.083877 1.231022 3.159865
5 8 -0.496444 4.467193 0.000000
6 8 3.055450 0.954726 0.000000
7 8 -1.385439 -2.660068 2.384562
8 8 -1.385439 -2.660068 -2.384562
9 8 -0.083877 1.231022 -3.159865
10 8 2.783228 -2.580739 0.000000
11 8 -2.993558 0.562491 0.000000
12 75 0.070714 1.398170 0.000000
13 75 -0.006774 -1.520693 0.000000
14 7 -0.870395 -2.073560 -1.493894
15 7 1.727464 -2.043454 0.000000
16 7 1.909605 1.124490 0.000000
17 6 -1.868450 0.800043 0.000000
18 7 -0.870395 -2.073560 1.493894
------
Table S35. Theoretical Cartesian coordinates (in Å) for the structure4S-11
usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -1.496286 0.364834 0.000000
2 75 1.496286 -0.364834 0.000000
3 6 1.422501 0.914060 1.511684
4 6 -1.422501 -0.914060 1.511684
5 6 -1.422501 -0.914060 -1.511684
6 6 1.422501 0.914060 -1.511684
7 8 -0.536826 3.236496 0.000000
8 8 4.463357 -0.617864 0.000000
9 8 1.422501 1.604231 2.435133
10 8 -4.463357 0.617864 0.000000
11 8 -1.422501 -1.604231 2.435133
12 8 0.536826 -3.236496 0.000000
13 8 -1.422501 -1.604231 -2.435133
14 8 1.422501 1.604231 -2.435133
15 7 3.299239 -0.536599 0.000000
16 7 -3.299239 0.536599 0.000000
17 7 -0.853172 2.104402 0.000000
18 7 0.853172 -2.104402 0.000000
------
Table S36. Theoretical Cartesian coordinates (in Å) for the structure 3S-1using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.385215 0.050434 -0.064413
2 75 -1.332109 -0.090715 0.079901
3 7 2.612629 -0.796624 -1.103417
4 7 1.279343 1.880800 -0.219650
5 7 0.043111 -1.522967 0.101281
6 7 -2.709384 -0.587619 1.130838
7 6 -2.264162 -0.434491 -1.580426
8 6 2.300533 -0.137222 1.665935
9 6 -1.577636 1.893261 -0.002604
10 8 -3.580756 -0.896680 1.849367
11 8 0.162366 -2.724938 0.162043
12 8 -2.794838 -0.660946 -2.578522
13 8 -1.706148 3.036259 -0.024349
14 8 2.826532 -0.232175 2.683838
15 8 1.279675 3.039210 -0.393182
16 8 3.398759 -1.276147 -1.826998
------
Table S37. Theoretical Cartesian coordinates (in Å) for the structure 3S-2using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.332378 -0.102196 -0.053582
2 75 -1.393350 0.046103 -0.083514
3 6 -2.208065 -0.012375 1.704331
4 6 2.335322 -0.241915 1.603997
5 6 1.580440 1.873516 -0.241515
6 8 -0.167534 -2.727614 0.113002
7 8 -3.521499 -1.381141 -1.619444
8 8 -2.679557 -0.032578 2.752989
9 8 3.506939 -1.112929 -1.798866
10 8 2.905997 -0.351798 2.599777
11 8 -1.282708 3.004920 -0.613769
12 8 1.710595 3.006539 -0.393364
13 7 -2.690216 -0.857209 -0.983859
14 7 2.670799 -0.729690 -1.074829
15 7 -0.048672 -1.524074 0.074335
16 7 -1.282076 1.860754 -0.364403
------
Table S38. Theoretical Cartesian coordinates (in Å) for the structure 3S-3using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 2.576630 -0.387623 1.396781
2 6 2.576630 -0.387623 -1.396781
3 6 1.832662 1.846419 0.000000
4 8 3.338569 -0.665725 2.213456
5 8 3.338569 -0.665725 -2.213456
6 8 -0.236945 -0.077144 -2.727086
7 8 -3.082085 -2.662267 0.000000
8 8 2.104400 2.971627 0.000000
9 8 -3.584447 1.974469 0.000000
10 8 -0.236945 -0.077144 2.727086
11 75 1.260379 0.034703 0.000000
12 75 -1.467557 -0.148971 0.000000
13 7 -2.445372 -1.676804 0.000000
14 7 -2.724469 1.176466 0.000000
15 7 -0.236945 -0.052806 -1.521731
16 7 -0.236945 -0.052806 1.521731
------
Table S39. Theoretical Cartesian coordinates (in Å) for the structure 3S-4using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.654549 1.219727 0.000000
2 75 -0.509812 -1.315569 0.000000
3 8 -2.043477 -4.065135 0.000000
4 8 0.627544 -1.531975 2.778491
5 8 3.522766 2.433783 0.000000
6 8 -0.297707 2.644958 2.402372
7 8 -3.158524 0.350689 0.000000
8 8 -0.297707 2.644958 -2.402372
9 8 0.627544 -1.531975 -2.778491
10 7 0.165908 -1.430805 -1.703494
11 7 0.165908 -1.430805 1.703494
12 7 0.165908 1.956462 1.566319
13 7 0.165908 1.956462 -1.566319
14 6 -1.485460 -3.060101 0.000000
15 6 -2.182707 -0.264054 0.000000
16 6 2.444134 2.035244 0.000000
------
Table S40. Theoretical Cartesian coordinates (in Å) for the structure 3S-5using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.004049 1.389483 0.000000
2 75 -0.033764 -1.423419 0.000000
3 8 -1.431897 2.315136 2.412421
4 8 -1.237265 -1.217370 2.748979
5 8 -1.237265 -1.217370 -2.748979
6 8 2.156961 3.626271 0.000000
7 8 3.032022 -0.800931 0.000000
8 8 -1.431897 2.315136 -2.412421
9 8 0.457262 -4.529215 0.000000
10 6 1.324381 2.832388 0.000000
11 6 1.897486 -1.022226 0.000000
12 6 0.282867 -3.392556 0.000000
13 7 -0.738823 -1.297070 1.690740
14 7 -0.738823 -1.297070 -1.690740
15 7 -0.736593 1.876090 -1.569153
16 7 -0.736593 1.876090 1.569153
------
Table S41. Theoretical Cartesian coordinates (in Å) for the structure 3S-6using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 0.006612 0.809563 1.961591
2 6 -1.566858 2.308449 0.000000
3 6 0.006612 0.809563 -1.961591
4 8 -0.017168 0.660008 3.103114
5 8 -2.564421 2.882226 0.000000
6 8 -1.267333 -2.269746 -2.598395
7 8 -1.267333 -2.269746 2.598395
8 8 -0.017168 0.660008 -3.103114
9 8 2.842160 -2.262691 0.000000
10 8 1.954948 3.578901 0.000000
11 75 0.075014 1.274106 0.000000
12 75 -0.030596 -1.418838 0.000000
13 7 -0.811152 -1.868188 1.588528
14 7 1.715014 -1.932928 0.000000
15 7 -0.811152 -1.868188 -1.588528
16 7 1.147434 2.734699 0.000000
------
Table S42. Theoretical Cartesian coordinates (in Å) for the structure 3S-7using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.099290 -1.431266 0.000000
2 75 -0.029462 1.377967 0.000000
3 8 2.990207 -2.199371 0.000000
4 8 -0.186603 -0.871666 3.097407
5 8 1.942826 3.795976 0.000000
6 8 -2.043290 -3.534290 0.000000
7 8 -1.540901 2.174090 -2.407434
8 8 -0.186603 -0.871666 -3.097407
9 8 -1.540901 2.174090 2.407434
10 6 -0.075576 -1.038498 1.964344
11 6 1.181979 2.933045 0.000000
12 7 -0.812981 1.792069 1.562484
13 7 -0.812981 1.792069 -1.562484
14 7 -1.237826 -2.681097 0.000000
15 7 1.878087 -1.828206 0.000000
16 6 -0.075576 -1.038498 -1.964344
------
Table S43. Theoretical Cartesian coordinates (in Å) for the structure 3S-8using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -0.146187 1.522559 2.010125
2 6 0.981066 3.017943 0.000000
3 6 -0.146187 1.522559 -2.010125
4 8 -0.210468 1.643710 3.148731
5 8 1.650509 3.964409 0.000000
6 8 2.535459 0.036745 0.000000
7 8 0.110536 -3.307225 2.336918
8 8 -0.210468 1.643710 -3.148731
9 8 0.110536 -3.307225 -2.336918
10 8 -2.766232 0.019572 0.000000
11 75 -0.057384 1.410174 0.000000
12 75 -0.118955 -1.464453 0.000000
13 7 0.110536 -2.515798 1.463848
14 7 0.110536 -2.515798 -1.463848
15 7 1.337777 0.057769 0.000000
16 7 -1.653954 -0.434319 0.000000
------
Table S44. Theoretical Cartesian coordinates (in Å) for the structure 3T-1using
the MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -2.640597 1.423709 -0.000288
2 6 -2.236676 -0.931815 -1.364408
3 6 -2.236563 -0.931196 1.364858
4 8 -3.453592 2.236266 -0.000443
5 8 -2.771877 -1.478461 -2.229317
6 8 0.416854 -2.609199 0.000280
7 8 3.273764 -0.187606 -2.422272
8 8 -2.771683 -1.477456 2.230065
9 8 3.273677 -0.186932 2.422384
10 8 0.216900 2.765932 -0.000388
11 75 -1.255790 0.020911 0.000000
12 75 1.500924 0.111006 0.000000
13 7 2.541753 -0.048467 -1.504484
14 7 2.541692 -0.048053 1.504536
15 7 0.304504 -1.417578 0.000149
16 7 0.158573 1.548620 -0.000221
------
Table S45. Theoretical Cartesian coordinates (in Å) for the structure 3T-2using
the BP86/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 2.273497 1.265830 1.375488
2 6 2.273497 1.265830 -1.375488
3 6 0.300045 2.628404 0.000000
4 8 3.072790 1.489371 2.172220
5 8 3.072790 1.489371 -2.172220
6 8 -0.098676 -0.359063 -2.678530
7 8 -0.813438 -4.049878 0.000000
8 8 -0.162071 3.688103 0.000000
9 8 -3.998984 -0.257100 0.000000
10 8 -0.098676 -0.359063 2.678530
11 75 0.936393 0.823328 0.000000
12 75 -1.061261 -1.050700 0.000000
13 7 -0.881436 -2.868918 0.000000
14 7 -2.850779 -0.549325 0.000000
15 7 -0.098676 -0.222402 -1.480376
16 7 -0.098676 -0.222402 1.480376
------
Table S46. Theoretical Cartesian coordinates (in Å) for the structure 3T-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 0.743240 1.672297 0.157398
2 6 -1.951395 0.158650 1.745159
3 6 -2.805969 -1.205863 -0.559553
4 8 0.626170 2.825389 0.270304
5 8 -2.294918 0.279333 2.837650
6 8 0.260167 -2.682584 -0.301802
7 8 3.166530 -0.215569 2.461321
8 8 -3.671869 -1.897249 -0.864910
9 8 3.246041 0.174026 -2.442181
10 8 -2.430832 2.514237 -1.189948
11 75 -1.310498 -0.025528 -0.076953
12 75 1.471381 -0.113679 -0.025873
13 7 2.478813 -0.211713 1.500951
14 7 2.521664 -0.006229 -1.525803
15 7 -0.014254 -1.496591 -0.184327
16 7 -2.013629 1.530160 -0.720752
------
Table S47. Theoretical Cartesian coordinates (in Å) for the structure 3T-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -1.401565 0.184576 -0.023817
2 75 1.330625 -0.017504 -0.005687
3 6 2.912452 1.155709 0.255967
4 6 -2.166417 -0.715054 1.505996
5 6 -1.051443 -1.511121 -0.895677
6 8 0.138804 2.807577 0.288506
7 8 2.196050 -1.288413 -2.578603
8 8 3.817169 1.840198 0.425045
9 8 -4.032371 1.018817 -1.141090
10 8 -2.576971 -1.208838 2.464988
11 8 1.871572 -1.905852 2.248382
12 8 -0.957648 -2.508721 -1.477775
13 7 1.835028 -0.697670 -1.625754
14 7 -3.010128 0.759934 -0.626365
15 7 0.037202 1.598910 0.151811
16 7 1.637912 -1.110572 1.411658
------
Table S48. Theoretical Cartesian coordinates (in Å) for the structure 3T-5 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.223706 -1.542163 0.000000
2 75 -0.084834 1.292777 0.000000
3 8 0.091013 4.423952 0.000000
4 8 -1.375371 1.044429 2.698460
5 8 -2.773927 -2.078756 0.000000
6 8 0.723295 -1.966111 2.963420
7 8 3.043908 1.002639 0.000000
8 8 0.723295 -1.966111 -2.963420
9 8 -1.375371 1.044429 -2.698460
10 7 -0.831253 1.144054 -1.665557
11 7 -0.831253 1.144054 1.665557
12 7 0.502086 -1.746725 1.822958
13 7 0.502086 -1.746725 -1.822958
14 6 0.023576 3.275824 0.000000
15 6 1.897602 1.122864 0.000000
16 6 -1.631466 -1.881092 0.000000
------
Table S49. Theoretical Cartesian coordinates (in Å) for the structure 3T-6 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.415802 -1.308851 -0.075266
2 75 -0.415802 1.308851 -0.075266
3 8 -0.276085 -3.667798 1.810511
4 8 -3.350839 1.832508 -0.193980
5 8 0.000000 0.000000 2.765039
6 8 3.350839 -1.832508 -0.193980
7 8 0.276085 3.667798 1.810511
8 8 -1.388261 -2.057015 -2.380129
9 8 1.388261 2.057015 -2.380129
10 6 0.000000 -2.796635 1.111535
11 6 0.000000 0.000000 1.588782
12 6 0.000000 2.796635 1.111535
13 7 -2.204450 1.613137 -0.052827
14 7 0.703808 1.725104 -1.481740
15 7 -0.703808 -1.725104 -1.481740
16 7 2.204450 -1.613137 -0.052827
------
Table S50. Theoretical Cartesian coordinates (in Å) for the structure 3T-7 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.136931 -1.529553 0.000000
2 75 0.081044 1.348766 0.000000
3 7 -0.157675 -2.258272 1.676689
4 7 -0.157675 -2.258272 -1.676689
5 7 0.688132 1.674167 -1.699542
6 7 0.688132 1.674167 1.699542
7 6 -1.103793 2.886851 0.000000
8 6 -1.573554 0.061797 0.000000
9 6 1.720190 -0.991886 0.000000
10 8 1.178562 1.949244 2.732287
11 8 1.178562 1.949244 -2.732287
12 8 -1.831172 3.777890 0.000000
13 8 2.857092 -0.774527 0.000000
14 8 -2.754192 0.044891 0.000000
15 8 -0.157675 -2.848629 -2.698184
16 8 -0.157675 -2.848629 2.698184
------
Table S51. Theoretical Cartesian coordinates (in Å) for the structure 3T-8 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.470868 0.080576 -0.138027
2 75 -1.470193 -0.163839 -0.082070
3 8 1.512506 3.105115 -0.209757
4 8 1.561099 -0.589370 2.874138
5 8 -1.254503 2.603584 1.290457
6 8 4.013304 -1.342086 -0.777265
7 8 -3.194313 0.705562 -2.373758
8 8 0.040563 -2.396339 -1.412501
9 8 -2.793926 -1.590759 2.184627
10 6 1.507437 -0.360123 1.746001
11 6 -1.286511 1.569768 0.781466
12 7 -2.182312 -1.042800 1.337893
13 7 -2.428886 0.377915 -1.537732
14 7 2.997531 -0.811432 -0.534597
15 7 1.428397 1.934716 -0.153706
16 6 0.140484 -1.364607 -0.841340
------
Table S52. Theoretical Cartesian coordinates (in Å) for the structure 2S-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.183721 1.352747 -0.057193
2 75 0.183721 -1.352747 -0.057193
3 6 0.081990 -2.442496 1.552931
4 6 -0.081990 2.442496 1.552931
5 8 0.183721 3.619947 -1.943379
6 8 2.624282 0.464329 -0.152578
7 8 -0.028530 -3.053052 2.525220
8 8 -2.624282 -0.464329 -0.152578
9 8 -0.183721 -3.619947 -1.943379
10 8 0.028530 3.053052 2.525220
11 7 1.429242 0.343195 -0.045899
12 7 -1.429242 -0.343195 -0.045899
13 7 0.051560 2.750881 -1.162983
14 7 -0.051560 -2.750881 -1.162983
------
Table S53. Theoretical Cartesian coordinates (in Å) for the structure 2S-2 usingthe MPW1PW91/SDDmethod
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.120057 0.159449 -1.357439
2 75 -0.120057 -0.159449 1.357439
3 6 1.484194 -0.095804 2.436902
4 6 -1.484194 0.095804 -2.436902
5 8 1.946132 -0.264249 -3.668494
6 8 -0.266360 2.623579 0.408088
7 8 2.460545 0.004752 3.044597
8 8 0.266360 -2.623579 -0.408088
9 8 -1.946132 0.264249 3.668494
10 8 -2.460545 -0.004752 -3.044597
11 7 -0.102517 1.432604 0.316158
12 7 0.102517 -1.432604 -0.316158
13 7 1.207919 -0.133485 -2.763737
14 7 -1.207919 0.133485 2.763737
------
Table S54. Theoretical Cartesian coordinates (in Å) for the structure 2S-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.381330 -0.074699 -0.183531
2 75 -1.362248 0.048731 -0.179461
3 6 -2.478296 -1.387670 0.413360
4 6 2.476809 1.529066 0.096820
5 8 3.581923 -1.851756 0.734834
6 8 0.079719 0.065724 2.490765
7 8 -3.095039 -2.290934 0.787143
8 8 -0.881785 -0.366336 -2.340491
9 8 -3.274987 2.095409 0.742811
10 8 3.090652 2.496376 0.215475
11 7 0.087336 0.070858 1.291699
12 7 0.144910 -0.173124 -1.615144
13 7 2.716437 -1.132643 0.395643
14 7 -2.580980 1.222243 0.373370
------
Table S55. Theoretical Cartesian coordinates (in Å) for the structure 2S-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -0.239513 -2.626653 1.350914
2 6 -0.239513 -2.626653 -1.350914
3 8 -0.535394 -3.332919 2.217678
4 8 -2.538070 -0.399536 0.000000
5 8 -0.302282 3.212723 2.315971
6 8 -0.535394 -3.332919 -2.217678
7 8 -0.302282 3.212723 -2.315971
8 8 2.756451 0.057521 0.000000
9 75 0.244120 -1.325394 0.000000
10 75 -0.025241 1.342270 0.000000
11 7 -0.242203 2.495095 1.391464
12 7 -0.242203 2.495095 -1.391464
13 7 -1.341917 -0.263819 0.000000
14 7 1.556890 0.261254 0.000000
------
Table S56. Theoretical Cartesian coordinates (in Å) for the structure 2S-5usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.106124 1.331084 -0.063848
2 75 0.106124 -1.331084 -0.063848
3 8 1.566487 -3.728902 -1.502985
4 8 -2.710594 -1.834604 -0.784386
5 8 -1.566487 3.728902 -1.502985
6 8 2.710594 1.834604 -0.784386
7 8 -0.460907 2.119916 2.758247
8 8 0.460907 -2.119916 2.758247
9 7 0.489280 -1.763196 1.636300
10 7 -1.566487 -1.566043 -0.672536
11 7 1.566487 1.566043 -0.672536
12 7 -0.489280 1.763196 1.636300
13 6 1.008636 -2.887429 -0.954127
14 6 -1.008636 2.887429 -0.954127
------
Table S57. Theoretical Cartesian coordinates (in Å) for the structure 2S-6usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.022752 1.310990 0.000000
2 75 -0.022752 -1.310990 0.000000
3 8 -0.019253 3.134390 2.366364
4 8 2.837490 -0.137731 0.000000
5 8 -0.019253 3.134390 -2.366364
6 8 0.019253 -3.134390 -2.366364
7 8 -2.837490 0.137731 0.000000
8 8 0.019253 -3.134390 2.366364
9 7 -0.019253 -2.460896 1.410287
10 7 -0.019253 -2.460896 -1.410287
11 7 0.019253 2.460896 -1.410287
12 7 0.019253 2.460896 1.410287
13 6 -1.673977 0.282295 0.000000
14 6 1.673977 -0.282295 0.000000
------
Table S58. Theoretical Cartesian coordinates (in Å) for the structure 2S-7usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.701616 -1.272686 0.000000
2 75 -0.701616 1.272686 0.000000
3 6 1.195490 1.003355 0.000000
4 6 -1.195490 -1.003355 0.000000
5 8 0.838658 -2.866466 2.515029
6 8 -0.838658 2.866466 2.515029
7 8 0.838658 -2.866466 -2.515029
8 8 2.376824 1.020443 0.000000
9 8 -0.838658 2.866466 -2.515029
10 8 -2.376824 -1.020443 0.000000
11 7 -0.838658 2.145721 1.584835
12 7 0.838658 -2.145721 -1.584835
13 7 0.838658 -2.145721 1.584835
14 7 -0.838658 2.145721 -1.584835
------
Table S59. Theoretical Cartesian coordinates (in Å) for the structure 2T-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.059875 0.129014 1.337581
2 75 -0.059875 0.129014 -1.337581
3 6 1.561551 -0.296209 -2.329476
4 6 1.561551 -0.296209 2.329476
5 8 -2.053364 -0.482225 3.500490
6 8 0.140634 2.818570 0.000000
7 8 2.555294 -0.549923 -2.857786
8 8 -0.199470 -2.513851 0.000000
9 8 -2.053364 -0.482225 -3.500490
10 8 2.555294 -0.549923 2.857786
11 7 0.067979 1.603082 0.000000
12 7 -0.088749 -1.314617 0.000000
13 7 -1.226586 -0.267157 2.689942
14 7 -1.226586 -0.267157 -2.689942
------
Table S60. Theoretical Cartesian coordinates (in Å) for the structure 2T-2 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.261707 -0.246873 -1.288339
2 75 0.261707 0.246873 1.288339
3 6 1.868898 -0.139751 2.374536
4 6 -1.868898 0.139751 -2.374536
5 8 1.683661 -0.442732 -3.530854
6 8 -0.292243 2.625921 -0.430285
7 8 2.839068 -0.351668 2.957250
8 8 0.292243 -2.625921 0.430285
9 8 -1.683661 0.442732 3.530854
10 8 -2.839068 0.351668 -2.957250
11 7 -0.158046 1.425620 -0.313705
12 7 0.158046 -1.425620 0.313705
13 7 0.851266 -0.448188 -2.698189
14 7 -0.851266 0.448188 2.698189
------
Table S61. Theoretical Cartesian coordinates (in Å) for the structure 2T-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.269222 -1.480329 0.000000
2 75 0.416197 1.070213 0.000000
3 8 3.202806 2.451536 0.000000
4 8 -0.580916 2.420683 2.441036
5 8 -3.180213 -0.537435 0.000000
6 8 0.022562 -1.936659 2.989675
7 8 0.022562 -1.936659 -2.989675
8 8 -0.580916 2.420683 -2.441036
9 7 -0.096126 1.777634 -1.577502
10 7 -0.096126 1.777634 1.577502
11 7 -0.096126 -1.714041 1.836365
12 7 -0.096126 -1.714041 -1.836365
13 6 2.141684 2.003023 0.000000
14 6 -2.071469 -0.867832 0.000000
------
Table S62. Theoretical Cartesian coordinates (in Å) for the structure 2T-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 0.412975 2.556997 1.375304
2 6 0.412975 2.556997 -1.375304
3 8 0.776861 3.216746 2.251174
4 8 2.477083 0.136729 0.000000
5 8 0.412975 -2.999939 2.490941
6 8 0.776861 3.216746 -2.251174
7 8 0.412975 -2.999939 -2.490941
8 8 -2.816394 -0.039101 0.000000
9 75 -0.208847 1.333396 0.000000
10 75 -0.086679 -1.360751 0.000000
11 7 0.225243 -2.343318 1.522677
12 7 0.225243 -2.343318 -1.522677
13 7 1.274810 0.124989 0.000000
14 7 -1.598739 -0.135819 0.000000
------
Table S63. Theoretical Cartesian coordinates (in Å) for the structure 2T-5 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.013013 1.366551 0.000000
2 75 -0.186310 -1.418814 0.000000
3 6 -1.758940 -0.299920 0.000000
4 6 1.424791 -0.028238 0.000000
5 8 0.916137 3.040955 2.269683
6 8 -0.084408 -2.764926 2.699112
7 8 0.916137 3.040955 -2.269683
8 8 -2.834589 0.174246 0.000000
9 8 -0.084408 -2.764926 -2.699112
10 8 2.591345 -0.225994 0.000000
11 7 -0.084408 -2.230817 1.649549
12 7 0.483861 2.365544 -1.408988
13 7 0.483861 2.365544 1.408988
14 7 -0.084408 -2.230817 -1.649549
------
Table S64. Theoretical Cartesian coordinates (in Å) for the structure 1S-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.050837 -0.029734 -0.019040
2 75 -1.507481 0.152421 0.440528
3 8 2.098315 -0.980366 2.574350
4 8 1.640626 -2.093214 -2.053794
5 8 -1.709820 2.327084 -1.503225
6 8 3.403870 1.908133 -0.750607
7 8 -2.490627 -2.032285 -1.231469
8 7 -2.097456 -1.282598 -0.402207
9 7 -1.553642 1.614306 -0.566713
10 7 1.332032 -1.182168 -1.375807
11 7 1.631794 -0.451423 1.628845
12 6 2.586721 1.146137 -0.480417
------
Table S65. Theoretical Cartesian coordinates (in Å) for the structure 1S-2 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.047535 -1.549097 0.000000
2 75 -0.160065 1.044805 0.000000
3 6 -1.720673 2.188056 0.000000
4 8 2.818814 -2.078830 0.000000
5 8 -0.196403 -0.497731 2.674937
6 8 -2.688870 2.819785 0.000000
7 8 -0.196403 -0.497731 -2.674937
8 8 1.627205 3.434372 0.000000
9 7 -0.196403 -0.253364 1.488148
10 7 -0.196403 -0.253364 -1.488148
11 7 1.638703 -2.109254 0.000000
12 7 0.894004 2.509504 0.000000
------
Table S66. Theoretical Cartesian coordinates (in Å) for the structure 1S-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.759646 -1.345045 0.000000
2 75 0.755193 0.742843 0.000000
3 6 0.057523 2.564267 0.000000
4 8 -3.411860 -0.146122 0.000000
5 8 0.078292 -0.696630 2.659225
6 8 -0.407324 3.621143 0.000000
7 8 0.078292 -0.696630 -2.659225
8 8 3.552944 1.753773 0.000000
9 7 0.078292 -0.338464 1.499816
10 7 0.078292 -0.338464 -1.499816
11 7 -2.461540 -0.847571 0.000000
12 7 2.428681 1.395250 0.000000
------
Table S67. Theoretical Cartesian coordinates (in Å) for the structure 1S-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.086585 1.092600 0.000000
2 75 -0.318795 -1.356140 0.000000
3 8 0.869604 2.741404 2.369481
4 8 0.869604 2.741404 -2.369481
5 8 1.394996 -2.250253 -2.219911
6 8 -2.995419 0.687636 0.000000
7 8 1.394996 -2.250253 2.219911
8 7 0.574954 -1.977728 1.421744
9 7 0.574954 -1.977728 -1.421744
10 7 0.574954 2.153922 -1.398154
11 7 0.574954 2.153922 1.398154
12 6 -1.825528 0.656552 0.000000
------
Table S68. Theoretical Cartesian coordinates (in Å) for the structure 1S-5 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 2.029841 1.427959 -0.561802
2 8 2.383684 2.331338 -1.195538
3 8 -2.464201 -2.483549 -1.076453
4 8 -2.344686 2.331017 -1.499756
5 8 -1.092767 0.280048 2.979279
6 8 2.595830 -1.948541 -1.483079
7 75 1.330902 -0.067189 0.362420
8 75 -1.151373 0.003407 -0.024648
9 7 -1.851096 1.414757 -0.950759
10 7 -0.988889 0.160140 1.802691
11 7 -1.935497 -1.504234 -0.698088
12 7 2.165966 -1.194461 -0.690650
------
Table S69. Theoretical Cartesian coordinates (in Å) for the structure 1S-6usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 2.369466 -1.629421 0.000000
2 8 3.526274 -1.519695 0.000000
3 8 -0.121436 -0.559774 2.661873
4 8 0.999990 3.524833 0.000000
5 8 -3.350024 1.956085 0.000000
6 8 -0.121436 -0.559774 -2.661873
7 75 0.450159 -1.451429 0.000000
8 75 -0.543516 0.958080 0.000000
9 7 0.364370 2.538420 0.000000
10 7 -2.218927 1.647134 0.000000
11 7 -0.121436 -0.375325 1.459267
12 7 -0.121436 -0.375325 -1.459267
------
Table S70. Theoretical Cartesian coordinates (in Å) for the structure 1S-7 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 -1.695689 1.775371 0.000000
2 8 -1.245031 -1.368978 2.763144
3 8 -1.245031 -1.368978 -2.763144
4 8 -1.835854 2.919232 0.000000
5 8 3.219008 -2.002551 0.000000
6 8 2.737167 2.557533 0.000000
7 75 1.120120 0.082139 0.000000
8 75 -1.359689 -0.182764 0.000000
9 7 2.174352 1.528311 0.000000
10 7 2.472815 -1.097670 0.000000
11 7 -1.245031 -0.857847 1.704215
12 7 -1.245031 -0.857847 -1.704215
------
Table S71. Theoretical Cartesian coordinates (in Å) for the structure 1T-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.153922 -0.033626 -0.290544
2 75 -1.304025 -0.200901 0.466988
3 6 1.837993 0.527447 1.391658
4 8 1.366107 2.617776 -1.795320
5 8 -2.131289 2.579106 0.105022
6 8 1.845749 -2.954325 -0.002436
7 8 -2.490494 -1.447612 -1.908358
8 8 2.246740 0.872247 2.419046
9 7 -1.704190 1.519587 0.429535
10 7 1.507533 -1.823932 -0.070015
11 7 1.209874 1.612386 -1.194505
12 7 -1.936744 -1.152706 -0.897424
------
Table S72. Theoretical Cartesian coordinates (in Å) for the structure 1T-2 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.419024 -1.252457 0.000000
2 75 0.149345 1.163758 0.000000
3 6 -1.798513 1.214840 0.000000
4 8 -2.943251 1.426550 0.000000
5 8 1.178221 1.942334 2.730963
6 8 1.178221 1.942334 -2.730963
7 8 1.178221 -2.384879 2.199452
8 8 1.178221 -2.384879 -2.199452
9 7 0.415660 -1.948880 1.410438
10 7 0.415660 -1.948880 -1.410438
11 7 0.788619 1.594003 -1.670730
12 7 0.788619 1.594003 1.670730
------
Table S73. Theoretical Cartesian coordinates (in Å) for the structure 1T-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -1.469750 -0.267831 0.280850
2 75 1.100728 0.026699 -0.204388
3 6 2.473652 -0.956415 0.710343
4 8 -3.381920 1.558638 -1.083948
5 8 -0.357706 -2.218938 -1.658507
6 8 3.240484 -1.561401 1.331303
7 8 -0.080348 1.616216 2.045581
8 8 2.956070 2.180214 -1.168091
9 7 -0.327088 -1.321693 -0.832918
10 7 -0.103151 0.763176 1.181327
11 7 -2.710597 0.816776 -0.446062
12 7 2.258275 1.345390 -0.720557
------
Table S74. Theoretical Cartesian coordinates (in Å) for the structure 1T-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -1.453113 -0.270098 0.314618
2 75 1.112033 -0.051062 -0.167484
3 6 1.978712 1.548147 -0.901291
4 8 -3.325831 1.519789 -1.145543
5 8 -0.088152 1.678979 2.015306
6 8 2.439182 2.492062 -1.378016
7 8 -0.443345 -2.235862 -1.643390
8 8 3.545529 -1.182805 1.099952
9 7 -0.091124 0.793943 1.184376
10 7 -0.339644 -1.343045 -0.819715
11 7 -2.679210 0.775448 -0.485702
12 7 2.637072 -0.709082 0.519067
------
Table S75. Theoretical Cartesian coordinates (in Å) for the structure 1T-5 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 6 2.577258 -0.775562 0.000000
2 8 3.418588 -1.575949 0.000000
3 8 -1.255096 -1.933829 2.610141
4 8 -1.255096 -1.933829 -2.610141
5 8 -2.280126 2.431299 0.000000
6 8 2.968540 2.809143 0.000000
7 75 1.157471 0.469415 0.000000
8 75 -1.342598 -0.428695 0.000000
9 7 -1.255096 -1.347362 -1.590705
10 7 -1.860984 1.329902 0.000000
11 7 -1.255096 -1.347362 1.590705
12 7 2.320676 1.825497 0.000000
------
Table S76. Theoretical Cartesian coordinates (in Å) for the structure 0S-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.036456 1.272325 -0.189178
2 75 -0.036456 -1.272325 -0.189178
3 7 -1.519354 1.384425 -1.047636
4 7 1.519354 -1.384425 -1.047636
5 7 -0.036456 1.690030 1.528345
6 8 0.404497 -2.001480 2.611075
7 7 0.036456 -1.690030 1.528345
8 8 -2.676171 1.556412 -1.258155
9 8 2.676171 -1.556412 -1.258155
10 8 -0.404497 2.001480 2.611075
------
Table S77. Theoretical Cartesian coordinates (in Å) for the structure 0S-2 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.000000 1.268897 -0.313664
2 75 0.000000 -1.268897 -0.313664
3 7 1.488269 0.000000 -0.483191
4 7 0.000000 2.012536 1.294647
5 7 -1.488269 0.000000 -0.483191
6 7 0.000000 -2.012536 1.294647
7 8 0.000000 -2.279916 2.448697
8 8 2.675707 0.000000 -0.218123
9 8 0.000000 2.279916 2.448697
10 8 -2.675707 0.000000 -0.218123
------
Table S78. Theoretical Cartesian coordinates (in Å) for the structure 0T-1 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -1.290946 0.310698 0.000000
2 75 1.156782 -0.291820 0.000000
3 7 -1.296428 1.246999 1.516606
4 7 1.531249 -1.314581 1.406212
5 7 -1.296428 1.246999 -1.516606
6 8 1.719854 -2.163855 -2.211111
7 7 1.531249 -1.314581 -1.406212
8 8 -1.296428 2.134501 2.304417
9 8 1.719854 -2.163855 2.211111
10 8 -1.296428 2.134501 -2.304417
------
Table S79. Theoretical Cartesian coordinates (in Å) for the structure 0T-2 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 0.181564 -0.443767 -1.375163
2 75 -0.181564 0.443767 1.375163
3 7 1.338953 0.356790 0.279171
4 7 -0.439401 -1.098314 -2.914104
5 7 -1.338953 -0.356790 -0.279171
6 7 0.439401 1.098314 2.914104
7 8 0.778429 1.526722 3.961175
8 8 2.531649 0.618397 0.367496
9 8 -0.778429 -1.526722 -3.961175
10 8 -2.531649 -0.618397 -0.367496
------
Table S80. Theoretical Cartesian coordinates (in Å) for the structure 0T-3 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 -0.014721 0.308726 1.324629
2 75 -0.014721 0.308726 -1.324629
3 7 1.406213 0.162737 0.000000
4 7 0.105000 -1.149980 2.349870
5 7 -1.448273 0.358306 0.000000
6 7 0.105000 -1.149980 -2.349870
7 8 0.105000 -2.258203 -2.762808
8 8 2.585329 -0.143370 0.000000
9 8 0.105000 -2.258203 2.762808
10 8 -2.666256 0.427716 0.000000
------
Table S81. Theoretical Cartesian coordinates (in Å) for the structure 0T-4 usingthe MPW1PW91/SDD method
Standard orientation:
------
Center Atomic Coordinates (Angstroms)
Number Number X Y Z
------
1 75 1.447799 -0.153794 0.000000
2 75 -1.447799 0.153794 0.000000
3 7 -0.057685 1.413519 0.000000
4 7 2.927685 -1.149753 0.000000
5 7 0.057685 -1.413519 0.000000
6 7 -2.927685 1.149753 0.000000
7 8 -3.948768 1.743285 0.000000
8 8 0.057685 2.632183 0.000000
9 8 3.948768 -1.743285 0.000000
10 8 -0.057685 -2.632183 0.000000
------
Complete Gaussian 03 reference (Reference 37)
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004.
1