Binuclear Rhenium Carbonyl Nitrosyls Related to Dicobalt Octacarbonyl and their Decarbonylation Products

Bing Xu,aQian-Shu Li,*b Yaoming Xie,c and R. Bruce King*c

aLibrary Information Department,Beijing University of Posts and Telecommunications,Beijing 100876, China

bKey Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China

cDepartment of Chemistry and Center for Computational Chemistry,University of Georgia, Athens, Georgia 30602, USA

Supporting Information

Figures S1-S4: Optimized triplet structures of Re2(NO)4(CO)n (n = 3, 2, 1, 0).

Tables S1-S9:Total energies, relative energies, number of imaginary vibrational frequencies (Nimag), Re-Re bond distance and spin contamination of singlet and triplet structures of Re2(NO)4(CO)n (n = 4, 3, 2, 1, 0).

Tables S10-S24: Theoretical harmonic vibrational frequencies for Re2(NO)4(CO)n (n = 4, 3, 2, 1, 0)usingtheBP86 method.

Tables S25-S81:Theoretical Cartesian coordinatesRe2(NO)4(CO)n(n = 4, 3, 2, 1, 0)usingtheMPW1PW91 method.

Complete Gaussian 03 reference (Reference 37)

3T-1 (Cs) 3T-2 (Cs)

3T-3 (C1) 3T-4 (C1) 3T-5 (Cs)

3T-6 (C2) 3T-7 (Cs) 3T-8 (C1)

Figure S1. Optimized triplet structures of Re2(NO)4(CO)3

2T-1 (CS) 2T-2 (Ci) 2T-3 (Cs/C2h)

2T-4 (CS) 2T-5 (CS)

Figure S2. Optimized triplet structures of Re2(NO)4(CO)2

1T-1 (C1) 1T-2 (CS)

1T-3 (C1) 1T-4 (C1) 1T-5 (Cs)

Figure S3. Optimized triplet structures of Re2(NO)4(CO)

T-1 (Cs) T-2 (Ci)

T-3 (Cs) T-4 (C2h)

Figure S4. Optimized triplet structures of Re2(NO)4

Table S1. Total energies (E, in Hartree), relative energies (E, in kcal/mol), and Re-Re distances (Ǻ) for the Re2(NO)4(CO)4 structures obtained by the MPW1PW91 and BP86 methods. None of the structures has any imaginary vibrational frequencies.

MPW1PW91 / BP86
E / ∆E / Re-Re / E / ∆E / Re-Re
4S-1 (C2h) / -1129.81944 / 0.0 / 3.010 / -1130.41595 / 0.0 / 3.048
4S-2 (C2v) / -1129.82193 / –1.6 / 2.906 / -1130.41440 / 1.0 / 2.944
4S-3 (C2) / -1129.81798 / 0.9 / 3.024 / -1130.41423 / 1.1 / 3.075
4S-4 (D2d) / -1129.82289 / –2.2 / 2.892 / -1130.41320 / 1.7 / 2.942
4S-5(Cs) / -1129.81561 / 2.5 / 2.984 / -1130.40878 / 4.5 / 3.035
4S-6(Cs) / -1129.81120 / 5.2 / 2.843 / -1130.40849 / 4.7 / 2.850
4S-7(C2) / -1129.82302 / –2.2 / 2.934 / -1130.40781 / 5.1 / 3.005
4S-8 (Cs) / -1129.81445 / 3.1 / 2.868 / -1130.40709 / 5.6 / 2.902
4S-9 (C2v) / -1129.81788 / 1.0 / 2.924 / -1130.40298 / 8.1 / 3.008
4S-10 (Cs) / -1129.80372 / 9.9 / 2.920 / -1130.40321 / 8.0 / 2.916
4S-11 (C2h) / -1129.79092 / 17.9 / 3.080 / -1130.38818 / 17.4 / 3.141

Table S2. Total energies (E, in Hartree), relative energies (E, in kcal/mol), numbers of imaginary vibrational frequencies (Nimag), and Re-Re distances (Ǻ) of the singlet Re2(NO)4(CO)3 structures.

MPW1PW91 / BP86
E / E / Nimag / Re-Re / E / E / Nimag / Re-Re
3S-1 (C1) / -1016.46946 / 0.0 / 0 / 2.725 / -1017.03353 / 0.0 / 0 / 2.760
3S-2 (C1) / -1016.46834 / 0.7 / 0 / 2.730 / -1017.03261 / 0.6 / 0 / 2.764
3S-3 (Cs) / -1016.47392 / –2.8 / 0 / 2.734 / -1017.03222 / 0.8 / 0 / 2.779
3S-4 (Cs) / -1016.46363 / 3.6 / 0 / 2.790 / -1017.02588 / 4.8 / 0 / 2.803
3S-5(Cs) / -1016.46201 / 4.7 / 0 / 2.813 / -1017.02457 / 5.6 / 0 / 2.861
3S-6 (Cs) / -1016.45469 / 9.3 / 0 / 2.695 / -1017.02281 / 6.7 / 0 / 2.708
3S-7(Cs) / -1016.45768 / 7.4 / 1(16i) / 2.812 / -1017.01942 / 8.9 / 0 / 2.791
3S-8 (Cs) / -1016.44882 / 13.0 / 0 / 2.875 / -1017.01260 / 13.1 / 0 / 2.899

Table S3. Total energies (E, in Hartree), relative energies (E, in kcal/mol), numbers of imaginary vibrational frequencies (Nimag) and Re-Re bond distances (Ǻ) of singlet Re2(NO)4(CO)2structures.

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / E / ∆E / Nimag / Re-Re
2S-1 (C2) / -903.11236 / 0.0 / 0 / 2.730 / -903.64836 / 0.0 / 0 / 2.727
2S-2 (Ci) / -903.11099 / 0.9 / 1(29i) / 2.744 / -903.64695 / 0.9 / 0 / 2.749
2S-3 (C1) / -903.12123 / –5.6 / 0 / 2.746 / -903.64395 / 2.8 / 0 / 2.747
2S-4 (Cs) / -903.10693 / 3.4 / 0 / 2.681 / -903.63747 / 6.8 / 0 / 2.714
2S-5 (C2) / -903.09960 / 8.0 / 0 / 2.671 / -903.63191 / 10.3 / 0 / 2.636
2S-6 (C2h) / -903.09056 / 13.7 / 0 / 2.622 / -903.63262 / 9.9 / 0 / 2.654
2S-7 (C2h) / -903.07745 / 21.9 / 0 / 2.907 / -903.61722 / 19.5 / 0 / 2.931

Table S4. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag), and Re-Re bond distances (Ǻ) of singlet structures of Re2(NO)4(CO).

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / E / ∆E / Nimag / Re-Re
1S-1 (C1) / -789.74218 / 0.0 / 0 / 2.606 / -790.23871 / 0.0 / 0 / 2.581
1S-2 (Cs) / -789.73873 / 2.2 / 0 / 2.596 / -790.23389 / 3.0 / 0 / 2.633
1S-3 (Cs) / -789.73742 / 3.0 / 0 / 2.579 / -790.2289 / 6.2 / 0 / 2.606
1S-4 (Cs) / -789.72088 / 13.4 / 0 / 2.482 / -790.22671 / 7.5 / (15i) / 2.502
1S-5 (C1) / -789.72353 / 11.7 / 0 / 2.513 / -790.22418 / 9.1 / 0 / 2.527
1S-6 (Cs) / -789.72291 / 12.1 / 0 / 2.606 / -790.21628 / 14.1 / 0 / 2.633
1S-7 (Cs) / -789.71265 / 18.5 / 0 / 2.494 / -790.21588 / 14.3 / 0 / 2.477

Table S5. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), and Re-Re bond distances (Ǻ) for the optimized Re2(NO)4 structures. Neither structure has any imaginary vibrational frequencies.

E / ∆E / Re-Re / E / ∆E / Re-Re
0S-1 (C2) / -676.37352 / 0.0 / 2.546 / -676.83486 / 0.0 / 2.534
0S-2 (C2v) / -676.34360 / 18.8 / 2.538 / -676.80912 / 16.2 / 2.565

Table S6.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO)3. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
3T-1 / -1016.46678 / 1.7 / 0 / 2.758 / 2.22 / -1017.02148 / 7.6 / 1(21i) / 2.804 / 2.03
3T-2 / -1016.46522 / 2.7 / 1(60i) / 2.739 / 2.17 / -1017.02200 / 7.2 / 0 / 2.802 / 2.02
3T-3 / -1016.46254 / 4.3 / 0 / 2.784 / 2.14 / -1017.02181 / 7.4 / 0 / 2.835 / 2.02
3T-4 / -1016.45397 / 9.7 / 0 / 2.740 / 2.12 / -1017.01240 / 13.3 / 0 / 2.828 / 2.02
3T-5 / -1016.44304 / 16.6 / 0 / 2.852 / 2.14 / -1017.00134 / 20.2 / 0 / 2.842 / 2.01
3T-6 / -1016.43891 / 19.2 / 0 / 2.747 / 2.10 / -1017.00451 / 19.2 / 0 / 2.773 / 2.01
3T-7 / -1016.43823 / 19.6 / 0 / 2.887 / 2.09 / -1017.00255 / 19.4 / 0 / 2.935 / 2.01
3T-8 / -1016.432455 / 23.2 / 0 / 2.952 / 2.10 / -1017.00225 / 19.6 / 0 / 2.908 / 2.01

Table S7. Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO)2. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
2T-1 / -903.10343 / 5.6 / 0 / 2.675 / 2.08 / -903.62717 / 13.3 / 0 / 2.706 / 2.01
2T-2 / -903.10021 / 7.6 / 0 / 2.675 / 2.10 / -903.62617 / 13.9 / 0 / 2.703 / 2.01
2T-3 / -903.09677 / 9.8 / 0 / 2.641 / 2.15 / -903.62042 / 17.5 / 0 / 2.559 / 2.01
2T-4 / -903.09243 / 12.5 / 0 / 2.697 / 2.15 / -903.61668 / 19.9 / 0 / 2.743 / 2.02
2T-5 / -903.08270 / 18.6 / 1(17i) / 2.791 / 2.21 / -903.62057 / 17.4 / 0 / 2.779 / 2.02

Table S8.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of triplet structures of Re2(NO)4(CO). Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
1T-1 / -789.72666 / 9.7 / 0 / 2.577 / 2.18 / -790.21874 / 12.5 / 0 / 2.546 / 2.01
1T-2 / -789.72206 / 12.6 / 1(8i) / 2.482 / 2.14 / -790.21886 / 12.5 / 0 / 2.504 / 2.01
1T-3 / -789.72466 / 11.0 / 0 / 2.632 / 2.10 / -790.21524 / 14.7 / 0 / 2.719 / 2.02
1T-4 / -789.72626 / 10.0 / 0 / 2.619 / 2.12 / -790.21424 / 15.4 / 0 / 2.714 / 2.02
1T-5 / -789.72153 / 13.0 / 0 / 2.656 / 2.17 / -790.20965 / 18.2 / 0 / 2.653 / 2.03

Table S9.Total energies (E, in Hartree), relative energies (∆E, in kcal/mol), number of imaginary vibrational frequencies (Nimag) of Re2(NO)4. Re-Re bond distance (Ǻ) and spin contamination for all structures are also listed.

MPW1PW91 / BP86
E / ∆E / Nimag / Re-Re / S2 / E / ∆E / Nimag / Re-Re / S2
T-1 / -676.36434 / 5.8 / 0 / 2.521 / 2.13 / -676.82361 / 7.1 / 0 / 2.502 / 2.01
T-2 / Same as T-4 / -676.80891 / 16.3 / 0 / 2.708 / 2.03
T-3 / -676.34816 / 15.9 / 0 / 2.649 / 2.13 / -676.80695 / 17.5 / 0 / 2.677 / 2.03
T-4 / -676.36157 / 7.5 / 0 / 2.912 / 2.90 / -676.80420 / 19.2 / 0 / 2.887 / 2.13

Table S10.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

4S-1 / 4S-2 / 4S-3 / 4S-4
20.0 (au, 0.0)
32.8 (au, 0.0)
41.7 (ag, 0.0)
41.9 (bu, 0.1)
46.1 (bg, 0.0)
67.7 (ag, 0.0)
68.9 (bu, 0.7)
72.6 (bg, 0.0)
72.8 (au, 0.1)
74.3 (ag, 0.0)
80.6 (bu, 0.6)
83.8 (bg, 0.0)
84.0 (au, 0.0)
89.0 (ag, 0.0)
94.6 (bu, 0.5)
112.3 (ag, 0.0)
335.9 (au, 0.8)
336.3 (bg, 0.0)
369.4 (ag, 0.0)
375.3 (bg, 0.0)
376.5 (au, 0.9)
388.7 (bu, 8.3)
400.0 (bg, 0.0)
421.3 (au, 46.2)
447.1 (ag, 0.0)
447.1 (bu, 19.2)
456.8 (ag, 0.0)
464.5 (bu, 14.9)
481.7 (ag, 0.0)
486.9 (bg, 0.0)
488.1 (bu, 9.5)
498.3 (au, 94.2)
533.1 (bg, 0.0)
533.4 (au, 15.9)
550.2 (bu, 19.9)
551.0 (ag, 0.0)
565.2 (bu, 276.2)
575.2 (ag, 0.0)
578.9 (bu, 151.2)
591.2 (ag, 0.0)
1735.0 (bg, 0.0)
1753.4 (au, 2078.0)
1755.9 (bu, 782.7)
1779.1 (ag, 0.0)
1972.7 (bu, 1150.5)
1973.7 (ag, 0.0)
2014.4 (bu, 2118.1)
2027.3 (ag, 0.0) / 26.5 (b1, 0.8)
33.1 (b2, 0.0)
43.4 (a2, 0.0)
51.7 (b1, 0.0)
68.3 (a1, 0.0)
72.5 (b2, 0.2)
75.9 (a1, 0.4)
76.3 (b1, 0.0)
79.3 (a2, 0.0)
82.5 (b2, 0.0)
85.9 (a2, 0.0)
86.2 (a1, 0.0)
98.4 (b2, 0.6)
136.4 (b1, 0.8)
138.4 (a1, 1.2)
191.2 (a1, 2.1)
266.3 (b1, 0.0)
290.3 (a2, 0.0)
307.6 (b2, 0.6)
376.0 (b2, 36.3)
380.6 (a2, 0.0)
390.3 (a1, 23.0)
397.5 (b2, 6.7)
417.1 (b1, 7.1)
449.2 (a1, 0.1)
468.7 (b1, 22.7)
473.7 (a1, 21.6)
479.6 (a2, 0.0)
491.6 (b2, 33.8)
500.0 (b1, 20.5)
518.3 (a1, 76.8)
526.2 (a2, 0.0)
531.6 (a1, 11.5)
538.3 (b1, 20.4)
540.2 (b2, 2.5)
560.9 (b2, 89.8)
572.9 (a1, 16.3)
588.6 (a1, 52.9)
601.1 (b1, 21.1)
628.1 (a1, 234.2)
1560.4 (b1, 838.3)
1572.6 (a1, 44.3)
1709.5 (b2, 882.0)
1743.1 (a1, 1207.5)
1991.0 (b1, 837.3)
1995.2 (b2, 1421.7)
2005.8 (a1, 497.8)
2075.6 (a1, 565.8) / 23.5 (a, 0.0)
34.0 (b, 0.0)
39.9 (a, 0.0)
42.6 (b, 0.0)
44.6 (a, 0.0)
68.5 (a, 0.4)
69.1 (b, 0.3)
72.8 (a, 0.0)
73.4 (b, 0.1)
76.2 (a, 0.0)
82.1 (b, 0.7)
84.3 (a, 0.0)
84.4 (b, 0.0)
87.8 (a, 0.0)
88.9 (b, 0.6)
111.2 (a, 0.0)
334.2 (a, 0.2)
335.5 (b, 0.5)
369.6 (b, 0.1)
370.9 (a, 0.1)
378.8 (b, 2.3)
386.8 (a, 0.1)
406.5 (a, 12.3)
417.3 (b, 34.0)
444.0 (b, 11.0)
448.3 (a, 17.8)
456.0 (a, 1.3)
462.6 (b, 11.4)
482.6 (a, 29.5)
483.4 (b, 1.1)
490.5 (b, 62.9)
491.0 (a, 5.0)
535.0 (a, 5.9)
535.3 (b, 13.1)
552.1 (b, 12.0)
552.5 (a, 7.5)
567.1 (b, 349.2)
576.8 (a, 46.9)
578.5 (b, 52.8)
595.3 (a, 1.2)
1741.4 (a, 369.5)
1743.9 (b, 782.7)
1756.2 (b, 900.8)
1783.3 (a, 795.7)
1967.0 (b, 471.3)
1980.7 (a, 544.5)
2011.6 (b, 2002.5)
2029.4 (a, 267.9) / 25.1 (b1, 0.0)
36.7 (e, 0.0)
36.7 (e, 0.0)
64.8 (a1, 0.0)
71.4 (b2, 0.9)
71.4 (e, 0.3)
71.4 (e, 0.3)
82.0 (a2, 0.0)
82.2 (b1, 0.0)
83.2 (e, 0.5)
83.2 (e, 0.5)
87.0 (e, 0.0)
87.0 (e, 0.0)
89.4 (b2, 6.7)
91.9 (a1, 0.0)
120.6 (a1, 0.0)
276.8 (e, 0.1)
276.8 (e, 0.1)
335.0 (a2, 0.0)
346.0 (b1, 0.0)
369.6 (e, 2.0)
369.6 (e, 2.0)
393.7 (b2, 176.2)
410.8 (e, 14.0)
410.8 (e, 14.0)
436.0 (b1, 0.0)
439.6 (a1, 0.0)
451.0 (a2, 0.0)
460.6 (b2, 66.9)
467.7 (a1, 0.0)
490.3 (e, 42.9)
490.3 (e, 42.9)
542.8 (e, 3.4)
542.8 (e, 3.4)
557.7 (a1, 0.0)
561.7 (e, 40.9)
561.7 (e, 40.9)
562.1 (b2, 27.1)
613.2 (a1, 0.0)
616.1 (b2, 54.8)
1748.7 (e, 779.9)
1748.7 (e, 779.9)
1763.3 (b2, 1894.9)
1777.8 (a1, 0.0)
1978.9 (e, 1246.5)
1978.9 (e, 1246.5)
2002.6 (b2, 64.9)
2037.5 (a1, 0.0)

Table S11.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

4S-5 / 4S-6 / 4S-7 / 4S-8
11.6 (a", 0.0)
30.1 (a", 0.0)
31.6 (a', 0.3)
55.7 (a", 0.0)
62.7 (a', 0.3)
65.6 (a', 0.2)
73.7 (a', 0.3)
76.4 (a", 0.1)
82.7 (a", 0.0)
83.8 (a', 0.2)
84.8 (a", 0.0)
87.1 (a', 2.0)
88.8 (a", 0.0)
89.4 (a', 0.2)
110.6 (a', 0.7)
118.8 (a', 0.7)
274.8 (a", 0.0)
339.0 (a", 0.2)
349.0 (a", 0.6)
367.6 (a", 0.1)
375.6 (a', 4.2)
390.6 (a', 2.8)
405.2 (a', 16.5)
429.4 (a', 55.4)
437.4 (a", 20.0)
449.0 (a", 2.3)
454.6 (a', 6.2)
464.9 (a', 5.0)
471.1 (a', 98.1)
489.7 (a", 58.0)
493.2 (a", 22.6)
504.9 (a', 11.2)
521.9 (a", 13.2)
543.2 (a', 0.6)
545.7 (a", 2.7)
556.4 (a', 84.4)
560.8 (a', 1.6)
568.0 (a', 0.9)
579.8 (a', 149.3)
615.0 (a', 5.1)
1730.0 (a", 502.5)
1755.0 (a', 356.2)
1756.3 (a", 1565.5)
1783.5 (a', 750.3)
1959.5 (a', 157.3)
1998.8 (a', 1525.0)
2010.7 (a', 1209.9)
2046.6 (a', 94.9) / 8.5 (a", 0.0)
43.0 (a", 0.2)
47.6 (a', 0.5)
50.5 (a", 0.3)
57.6 (a", 0.3)
59.6 (a', 0.2)
62.9 (a', 0.3)
77.0 (a", 0.0)
78.1 (a', 0.0)
82.9 (a', 0.0)
83.0 (a", 0.2)
85.0 (a", 0.5)
85.1 (a', 0.3)
87.2 (a', 0.3)
104.3 (a', 1.5)
132.3 (a', 2.3)
292.4 (a", 0.0)
341.1 (a", 0.6)
346.7 (a", 0.1)
355.0 (a', 12.6)
357.1 (a", 0.8)
357.6 (a', 8.2)
361.0 (a", 20.6)
389.2 (a', 11.1)
389.6 (a", 10.2)
433.4 (a", 0.1)
440.7 (a', 4.9)
466.6 (a', 0.1)
486.4 (a', 57.6)
503.3 (a", 25.1)
503.8 (a', 19.0)
515.7 (a", 31.1)
517.8 (a', 35.4)
533.9 (a', 11.7)
546.8 (a', 0.1)
548.2 (a", 0.0)
563.2 (a', 15.2)
568.4 (a', 47.1)
568.8 (a", 47.0)
599.3 (a', 74.6)
1691.0 (a', 763.9)
1691.6 (a", 754.8)
1732.2 (a', 1342.7)
1801.2 (a', 917.1)
2001.5 (a", 1131.2)
2001.6 (a', 1139.7)
2016.8 (a", 23.5)
2071.3 (a', 115.3) / 22.4 (a, 0.0)
34.4 (a, 0.0)
44.3 (b, 0.2)
62.0 (a, 0.1)
65.1 (b, 0.6)
72.6 (b, 0.1)
72.7 (a, 0.1)
74.9 (a, 0.2)
79.7 (b, 0.1)
81.8 (b, 0.0)
82.9 (b, 0.4)
84.2 (a, 0.0)
100.5 (a, 0.0)
128.0 (a, 0.4)
223.7 (a, 0.0)
224.3 (b, 0.2)
312.8 (b, 2.2)
337.1 (a, 1.6)
369.3 (b, 0.5)
370.6 (a, 0.3)
385.0 (a, 0.0)
391.6 (b, 38.1)
394.8 (a, 2.9)
426.4 (a, 12.1)
426.9 (b, 15.0)
458.5 (a, 7.4)
461.2 (b, 49.2)
471.9 (a, 17.8)
472.8 (b, 16.4)
484.2 (b, 31.8)
488.8 (b, 38.4)
503.8 (a, 3.9)
529.1 (a, 1.7)
533.3 (b, 98.3)
541.7 (b, 2.2)
547.8 (a, 10.1)
551.1 (b, 19.0)
600.1 (a, 61.9)
631.0 (a, 2.1)
648.2 (b, 172.6)
1504.0 (b, 503.1)
1522.3 (a, 133.2)
1790.0 (b, 1498.2)
1797.7 (a, 385.8)
1979.8 (b, 420.6)
1984.8 (a, 1473.7)
2017.6 (b, 1784.5)
2034.3 (a, 7.8) / 10.3 (a", 0.0)
39.7 (a", 0.0)
41.5 (a', 0.5)
57.8 (a', 0.0)
62.4 (a', 0.0)
66.1 (a", 0.0)
70.5 (a', 0.0)
73.6 (a', 0.2)
76.7 (a", 0.1)
81.1 (a', 0.3)
83.5 (a", 0.0)
83.5 (a', 0.2)
86.1 (a", 0.0)
88.3 (a", 0.4)
136.9 (a', 1.5)
218.9 (a', 1.1)
292.8 (a", 4.1)
331.2 (a", 0.1)
364.4 (a', 21.5)
371.3 (a", 4.3)
378.4 (a', 1.4)
380.4 (a", 29.3)
396.8 (a", 4.2)
425.5 (a', 54.6)
428.1 (a", 0.0)
443.4 (a', 0.5)
450.2 (a', 4.0)
455.6 (a', 18.7)
465.6 (a', 15.7)
479.5 (a", 4.8)
498.0 (a", 33.2)
511.9 (a', 15.1)
528.9 (a', 131.0)
538.3 (a", 3.6)
545.3 (a', 0.2)
547.6 (a", 61.3)
548.7 (a', 57.5)
565.0 (a', 172.5)
576.5 (a', 76.6)
639.0 (a', 81.5)
1520.9 (a', 474.0)
1721.3 (a", 884.9)
1743.8 (a', 842.3)
1772.5 (a', 863.7)
1985.2 (a', 766.9)
2006.8 (a", 1243.7)
2008.2 (a', 983.2)
2063.9 (a', 62.1)

Table S12.Theoretical harmonic vibrational frequencies (in cm–1) for structures of Re2(NO)4(CO)4using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

4S-9 / 4S-10 / 4S-11
20.4 (b1, 0.0)
24.7 (a2, 0.0)
34.6 (a1, 0.0)
61.4 (a2, 0.0)
62.0 (b2, 0.0)
70.1 (a1, 0.0)
73.4 (b1, 0.0)
78.4 (b1, 0.3)
78.9 (a1, 0.2)
80.5 (b2, 0.4)
81.1 (a2, 0.0)
81.8 (b2, 0.2)
101.0 (a1, 0.2)
145.9 (a1, 0.3)
214.7 (a2, 0.0)
224.3 (b2, 0.1)
315.2 (b1, 0.4)
350.5 (b1, 0.3)
362.8 (a1, 0.9)
366.0 (a2, 0.0)
376.2 (a2, 0.0)
391.2 (b1, 3.8)
402.2 (a1, 5.5)
414.4 (b2, 13.5)
426.9 (b2, 54.0)
435.3 (a2, 0.0)
437.2 (b1, 31.5)
438.8 (a1, 14.3)
445.7 (a2, 0.0)
471.8 (a1, 1.8)
491.8 (b2, 255.4)
492.7 (b1, 46.6)
515.6 (a1, 0.0)
525.7 (b2, 84.5)
539.8 (b1, 45.5)
561.0 (a1, 0.2)
565.7 (b2, 0.0)
593.3 (a1, 91.6)
607.6 (a2, 0.0)
674.9 (b2, 207.3)
1516.9 (b1, 473.0)
1545.4 (a1, 1214.3)
1775.5 (b2, 127.2)
1786.8 (a1, 1015.9)
1975.0 (a2, 0.0)
1986.6 (b1,1560.6)
2006.9 (b2, 917.6)
2035.6 (a1, 778.4) / 23.5 (a", 0.0)
32.2 (a", 0.0)
39.7 (a', 1.6)
44.4 (a', 0.1)
65.6 (a', 0.1)
68.2 (a", 0.0)
68.4 (a', 0.2)
73.2 (a", 0.1)
73.3 (a', 0.6)
78.8 (a', 0.6)
81.7 (a", 0.0)
83.5 (a', 1.2)
86.6 (a", 0.1)
88.1 (a", 0.1)
126.5 (a', 0.6)
186.0 (a', 14.8)
290.4 (a", 0.0)
315.6 (a", 0.5)
340.7 (a", 1.9)
345.7 (a', 56.6)
355.7 (a', 67.7)
366.7 (a', 59.2)
381.5 (a", 16.3)
388.0 (a", 12.7)
421.9 (a', 39.1)
446.3 (a', 5.4)
447.5 (a", 0.1)
468.4 (a', 0.9)
490.3 (a', 33.6)
496.4 (a", 2.7)
516.1 (a", 51.8)
521.2 (a', 2.9)
524.9 (a', 65.0)
533.9 (a', 14.9)
548.4 (a", 0.7)
550.1 (a', 44.6)
560.8 (a", 58.7)
563.8 (a', 7.1)
574.5 (a', 177.1)
599.5 (a', 3.5)
1715.1 (a", 891.7)
1716.4 (a', 691.6)
1754.6 (a', 1077.8)
1787.3 (a', 1287.6)
1852.7 (a', 153.4)
1995.2 (a', 863.0)
2010.7 (a", 1231.9)
2069.8 (a', 231.9) / 19.9 (bu, 0.3)
31.6 (au, 0.0)
38.9 (au, 0.0)
41.7 (ag, 0.0)
58.3 (bg, 0.0)
62.3 (bg, 0.0)
67.2 (au, 0.2)
72.9 (ag, 0.0)
77.4 (bu, 0.1)
80.3 (ag, 0.0)
82.4 (bu, 2.3)
84.7 (bg, 0.0)
89.1 (ag, 0.0)
92.4 (au, 0.0)
97.1 (bu, 2.5)
107.4 (ag, 0.0)
337.6 (ag, 0.0)
347.5 (bg, 0.0)
348.4 (au, 0.0)
355.4 (bu, 10.9)
358.2 (bg, 0.0)
377.3 (au, 2.9)
378.2 (bu, 17.5)
383.3 (ag, 0.0)
427.6 (bu, 143.2)
431.3 (bg, 0.0)
437.0 (au, 2.2)
446.6 (ag, 0.0)
460.8 (au, 32.2)
467.1 (bg, 0.0)
487.7 (bu, 167.9)
508.9 (ag, 0.0)
531.2 (bu, 61.6)
532.6 (ag, 0.0)
544.4 (ag, 0.0)
550.0 (au, 70.8)
556.4 (bg, 0.0)
556.8 (bu, 36.9)
558.1 (ag, 0.0)
566.9 (bu, 85.9)
1727.6 (bu,1326.5)
1732.3 (ag, 0.0)
1787.7 (bu,2050.8)
1794.6 (ag, 0.0)
1953.2 (bg, 0.0)
1971.5 (au, 1921.7)
1986.4 (bu, 740.1)
2014.6 (ag, 0.0)

Table S13.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)3using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

3S-1 / 3S-2 / 3S-3 / 3S-4
18.1 (a, 0.0)
30.0 (a, 0.0)
54.9 (a, 1.1)
61.5 (a, 0.1)
65.8 (a, 0.3)
73.4 (a, 0.1)
74.0 (a, 0.4)
77.3 (a, 0.2)
81.1 (a, 0.0)
83.0 (a, 0.1)
87.2 (a, 1.0)
97.7 (a, 0.1)
156.7 (a, 0.3)
225.0 (a, 0.9)
329.6 (a, 0.5)
346.3 (a, 1.1)
361.9 (a, 5.9)
379.1 (a, 5.9)
391.6 (a, 18.3)
395.8 (a, 0.6)
409.0 (a, 25.1)
442.3 (a, 23.6)
448.4 (a, 12.6)
453.0 (a, 16.9)
469.3 (a, 5.6)
483.0 (a, 9.3)
493.7 (a, 33.4)
506.3 (a, 116.1)
531.2 (a, 43.2)
536.7 (a, 51.5)
551.9 (a, 68.0)
556.0 (a, 71.5)
565.1 (a, 0.8)
580.6 (a, 51.4)
645.4 (a, 32.6)
1540.0 (a, 462.0)
1744.8 (a, 658.5)
1767.6 (a, 2009.6)
1774.3 (a, 75.7)
1972.2 (a, 736.3)
1998.6 (a, 1610.7)
2015.5 (a, 209.1) / 13.1 (a, 0.0)
29.1 (a, 0.0)
55.1 (a, 0.2)
58.8 (a, 0.7)
62.9 (a, 0.9)
73.6 (a, 0.3)
74.5 (a, 0.3)
77.5 (a, 0.2)
81.2 (a, 0.1)
82.6 (a, 0.1)
86.1 (a, 1.0)
96.4 (a, 0.3)
156.6 (a, 0.2)
227.0 (a, 1.0)
337.7 (a, 0.2)
352.5 (a, 0.8)
356.8 (a, 4.8)
369.6 (a, 8.9)
392.8 (a, 8.0)
401.6 (a, 5.9)
411.6 (a, 55.4)
442.8 (a, 19.8)
447.8 (a, 1.4)
456.4 (a, 16.2)
468.9 (a, 9.1)
480.1 (a, 12.2)
492.6 (a, 56.1)
505.7 (a, 14.1)
529.7 (a, 70.2)
532.8 (a, 22.3)
538.7 (a, 134.0)
563.3 (a, 55.7)
566.0 (a, 18.8)
584.7 (a, 44.2)
646.5 (a, 35.3)
1534.2 (a, 466.4)
1746.5 (a, 645.0)
1768.4 (a, 1215.6)
1779.9 (a, 895.2)
1970.5 (a, 831.7)
1993.7 (a, 836.3)
2017.6 (a, 787.2) / 26.8 (a", 0.0)
33.3 (a', 0.0)
62.2 (a", 0.1)
65.1 (a", 0.0)
72.3 (a', 1.8)
74.7 (a", 0.2)
75.6 (a', 0.3)
85.2 (a', 0.2)
88.0 (a', 0.4)
91.0 (a', 0.1)
91.1 (a", 0.0)
159.8 (a', 0.1)
210.3 (a", 1.8)
211.2 (a', 0.5)
281.8 (a", 0.0)
307.5 (a", 0.4)
341.0 (a', 0.2)
401.6 (a', 0.2)
404.0 (a", 0.7)
415.4 (a", 10.8)
430.1 (a', 27.2)
449.9 (a", 1.5)
462.2 (a', 2.5)
468.9 (a", 23.9)
471.7 (a', 89.9)
504.4 (a", 37.6)
515.0 (a', 22.4)
527.6 (a', 1.3)
534.7 (a', 7.6)
546.2 (a", 9.4)
548.6 (a', 45.4)
551.2 (a', 0.3)
593.5 (a', 51.8)
622.0 (a", 0.3)
635.9 (a', 277.9)
1538.7 (a", 794.5)
1560.5 (a', 0.6)
1727.8 (a', 978.7)
1766.5 (a', 1198.5)
1965.7 (a', 937.3)
1987.6 (a", 747.6)
2038.3 (a', 1014.7) / 16.3 (a", 0.0)
22.8 (a', 0.4)
39.0 (a", 0.0)
50.8 (a', 0.4)
59.0 (a", 0.0)
71.1 (a', 0.0)
76.0 (a", 0.0)
77.4 (a', 0.2)
79.5 (a', 0.1)
80.9 (a', 0.9)
81.9 (a", 0.1)
87.2 (a", 0.0)
87.3 (a', 0.4)
133.0 (a', 2.8)
323.2 (a", 1.5)
342.7 (a", 0.0)
366.3 (a", 0.3)
367.4 (a', 8.8)
370.2 (a", 2.7)
394.6 (a', 1.2)
421.7 (a", 17.1)
431.6 (a', 20.1)
446.1 (a', 9.9)
460.7 (a', 10.0)
471.9 (a", 8.7)
475.2 (a', 11.0)
485.8 (a", 58.3)
525.4 (a", 3.8)
543.7 (a', 53.1)
549.3 (a', 33.7)
549.8 (a', 35.0)
562.2 (a", 0.7)
564.8 (a', 18.8)
577.5 (a', 100.7)
639.9 (a', 0.7)
1717.7 (a", 120.1)
1743.3 (a", 1899.2)
1747.3 (a', 927.1)
1773.3 (a', 31.3)
1973.2 (a', 670.7)
2001.2 (a', 1574.4)
2017.2 (a', 465.3)

Table S14.Theoretical harmonic vibrational frequencies (in cm–1) for singletstructures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

3S-5 / 3S-6 / 3S-7 / 3S-8
5.8 (a", 0.1)
25.6 (a', 0.1)
32.4 (a", 0.0)
39.5 (a', 0.2)
56.7 (a", 0.0)
71.8 (a', 0.3)
73.2 (a", 0.0)
77.1 (a', 0.0)
79.0 (a', 0.0)
80.7 (a", 0.0)
82.7 (a', 0.6)
87.1 (a', 0.6)
87.2 (a", 0.1)
127.7 (a', 2.7)
324.9 (a", 1.7)
332.5 (a", 0.0)
347.6 (a', 0.4)
357.3 (a", 0.0)
374.5 (a", 3.4)
390.2 (a', 2.5)
434.3 (a", 12.3)
439.2 (a', 20.8)
443.5 (a', 10.0)
456.0 (a', 13.9)
459.3 (a', 1.6)
465.5 (a", 46.6)
474.7 (a", 14.3)
534.5 (a", 7.0)
538.5 (a', 144.0)
551.5 (a', 12.9)
561.0 (a', 12.3)
562.6 (a', 33.3)
565.2 (a", 1.8)
581.8 (a', 110.1)
644.4 (a', 0.7)
1716.4 (a", 169.9)
1740.2 (a', 248.4)
1751.7 (a", 1711.9)
1784.9 (a', 894.2)
1929.7 (a', 347.0)
1998.9 (a', 1591.1)
2013.8 (a', 523.0) / 10.1 (a", 0.1)
27.6 (a', 0.1)
53.6 (a', 0.1)
64.7 (a", 0.2)
64.9 (a', 0.0)
69.4 (a", 0.2)
71.8 (a', 0.3)
75.8 (a', 0.6)
79.1 (a", 0.2)
82.1 (a', 0.0)
83.3 (a", 0.8)
93.8 (a", 0.5)
108.6 (a', 3.7)
160.7 (a', 1.6)
298.0 (a", 0.7)
349.3 (a", 1.0)
353.5 (a", 13.4)
354.2 (a', 8.2)
369.6 (a', 6.8)
384.2 (a", 5.2)
397.5 (a', 30.0)
416.7 (a", 5.7)
450.7 (a', 26.2)
480.3 (a', 106.4)
481.4 (a", 0.3)
485.5 (a", 54.5)
493.5 (a', 23.4)
508.0 (a', 56.0)
538.0 (a', 26.6)
540.7 (a", 0.0)
545.2 (a', 93.0)
545.8 (a", 18.7)
557.3 (a', 2.7)
567.5 (a', 70.3)
575.9 (a', 2.7)
1705.8 (a", 722.7)
1711.6 (a', 975.3)
1753.1 (a', 1236.2)
1780.6 (a', 689.3)
1966.4 (a", 1210.4)
1983.7 (a', 372.3)
2029.2 (a', 468.3) / 10.8 (a", 0.0)
20.4 (a', 0.2)
37.8 (a', 0.4)
53.2 (a", 0.6)
61.0 (a", 0.0)
61.7 (a', 0.5)
72.8 (a", 0.0)
74.3 (a', 0.3)
77.5 (a', 0.1)
80.8 (a', 0.5)
86.3 (a", 0.0)
100.9 (a", 0.0)
109.9 (a', 1.3)
142.1 (a', 4.7)
300.9 (a', 5.0)
310.7 (a", 0.0)
325.0 (a", 2.0)
326.3 (a', 6.6)
346.2 (a", 0.3)
363.1 (a", 2.4)
387.6 (a', 0.7)
437.9 (a", 0.6)
444.0 (a', 66.1)
449.8 (a", 19.9)
462.4 (a', 20.7)
469.9 (a", 3.5)
477.2 (a', 31.4)
539.7 (a', 15.8)
549.5 (a', 269.5)
554.0 (a", 1.1)
557.1 (a', 31.1)
562.3 (a', 42.7)
568.8 (a", 37.5)
584.4 (a', 0.2)
637.0 (a', 4.5)
1730.7 (a", 625.4)
1745.2 (a', 379.9)
1752.6 (a', 1950.8)
1778.6 (a', 676.5)
1931.7 (a", 1224.9)
1961.2 (a', 136.9)
2008.6 (a', 755.9) / 30.4 (a", 0.0)
47.7 (a", 0.0)
49.8 (a', 0.2)
56.3 (a', 0.7)
63.3 (a', 0.2)
65.1 (a", 0.1)
68.5 (a", 0.3)
78.8 (a', 0.1)
82.6 (a', 1.2)
84.6 (a", 0.9)
94.0 (a", 0.5)
111.0 (a', 0.3)
147.9 (a', 1.5)
225.1 (a', 0.2)
253.0 (a', 17.9)
271.2 (a", 0.3)
299.0 (a", 0.4)
351.4 (a", 24.2)
375.6 (a", 10.1)
392.2 (a", 4.5)
419.4 (a', 0.8)
441.1 (a', 10.5)
468.8 (a", 24.3)
478.0 (a', 0.2)
491.3 (a', 0.5)
501.4 (a', 32.7)
512.9 (a", 36.7)
520.5 (a', 78.2)
539.0 (a', 6.7)
549.2 (a", 0.1)
560.8 (a", 17.7)
561.4 (a', 55.1)
565.2 (a', 3.5)
575.5 (a', 49.1)
635.4 (a', 47.7)
1574.9 (a', 455.0)
1602.6 (a', 438.8)
1712.3 (a", 915.5)
1743.3 (a', 1313.7)
1965.6 (a', 791.9)
1977.6 (a", 1543.6)
2048.8 (a', 570.2)

Table S15.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

3T-1 / 3T-2 / 3T-3 / 3T-4
-21.4 (a", 0.1)
39.2 (a", 0.0)
58.8 (a', 0.3)
63.3 (a", 0.0)
72.7 (a', 0.2)
77.4 (a', 0.4)
77.4 (a", 0.2)
87.1 (a", 0.0)
89.3 (a', 0.0)
89.4 (a", 0.7)
90.8 (a', 0.2)
155.2 (a', 2.1)
203.2 (a', 5.5)
205.1 (a", 0.2)
228.1 (a', 2.1)
294.5 (a', 22.0)
303.4 (a", 0.1)
347.6 (a", 2.4)
389.4 (a', 4.9)
393.2 (a", 0.5)
409.9 (a', 0.5)
424.1 (a', 4.7)
434.7 (a", 0.0)
442.8 (a', 3.4)
463.3 (a', 17.6)
473.8 (a', 2.0)
490.2 (a", 0.2)
496.0 (a", 5.3)
502.2 (a", 25.0)
534.5 (a', 10.9)
539.7 (a', 5.3)
550.1 (a", 24.8)
564.6 (a', 35.8)
581.9 (a', 37.8)
625.7 (a', 88.5)
1477.4 (a', 384.7)
1582.0 (a', 318.5)
1696.3 (a", 859.1)
1728.0 (a', 1110.4)
1968.8 (a", 970.6)
1985.3 (a', 698.0)
2038.9 (a', 1067.1) / 10.4 (a", 0.0)
37.4 (a', 0.1)
55.5 (a", 0.2)
66.9 (a', 0.2)
72.5 (a', 0.1)
75.3 (a", 0.1)
78.5 (a", 0.4)
84.9 (a', 0.0)
89.8 (a', 1.1)
90.2 (a", 0.0)
90.3 (a', 0.3)
155.5 (a', 2.3)
200.0 (a', 0.0)
212.5 (a', 1.0)
233.1 (a", 0.2)
280.7 (a", 2.9)
303.5 (a", 2.7)
373.7 (a", 4.0)
375.7 (a', 5.2)
394.9 (a", 2.1)
412.4 (a', 3.6)
416.7 (a", 0.0)
421.1 (a', 4.5)
445.5 (a", 0.7)
460.3 (a", 9.6)
464.1 (a', 11.2)
475.8 (a', 5.4)
491.3 (a', 3.7)
499.2 (a', 14.1)
529.5 (a", 9.9)
542.9 (a', 4.1)
549.7 (a', 18.5)
573.5 (a", 27.0)
576.1 (a', 48.6)
627.9 (a', 104.4)
1515.7 (a", 749.7)
1544.0 (a', 3.7)
1689.7 (a', 854.0)
1725.1 (a', 1082.1)
1968.8 (a', 944.5)
1989.0 (a", 700.8)
2039.7 (a', 1074.9) / 23.4 (a, 0.0)
30.8 (a, 0.0)
53.8 (a, 0.3)
65.4 (a, 0.3)
66.4 (a, 0.2)
75.6 (a, 0.2)
77.0 (a, 0.1)
79.6 (a, 0.2)
82.7 (a, 0.4)
85.5 (a, 0.1)
87.2 (a, 0.1)
120.6 (a, 1.6)
145.8 (a, 0.1)
218.3 (a, 0.2)
243.9 (a, 1.2)
311.3 (a, 4.0)
324.9 (a, 0.4)
357.5 (a, 5.9)
368.9 (a, 3.3)
377.1 (a, 1.2)
420.5 (a, 1.1)
426.8 (a, 8.6)
439.4 (a, 5.2)
454.0 (a, 13.8)
455.1 (a, 28.6)
465.1 (a, 15.8)
487.6 (a, 9.3)
498.1 (a, 14.9)
504.5 (a, 0.7)
521.5 (a, 41.0)
539.2 (a, 13.1)
545.0 (a, 8.6)
545.9 (a, 27.6)
558.2 (a, 86.2)
621.5 (a, 68.1)
1477.0 (a, 322.2)
1694.5 (a, 892.3)
1721.2 (a, 1167.6)
1783.1 (a, 691.0)
1899.0 (a, 611.8)
1982.3 (a, 893.5)
2031.6 (a, 897.7) / 21.6 (a, 0.0)
25.6 (a, 0.0)
56.0 (a, 0.3)
59.5 (a, 0.4)
66.8 (a, 0.3)
70.4 (a, 0.1)
73.2 (a, 0.0)
80.1 (a, 0.1)
81.3 (a, 0.2)
83.7 (a, 0.0)
85.1 (a, 0.2)
101.8 (a, 1.8)
143.4 (a, 0.3)
197.3 (a, 0.5)
205.7 (a, 1.8)
297.1 (a, 2.0)
325.3 (a, 6.0)
343.0 (a, 1.9)
361.2 (a, 3.1)
384.4 (a, 2.5)
395.7 (a, 1.9)
406.2 (a, 8.7)
421.8 (a, 4.6)
448.1 (a, 20.8)
453.5 (a, 12.7)
463.4 (a, 3.8)
473.6 (a, 39.3)
492.5 (a, 3.0)
516.9 (a, 4.5)
519.7 (a, 33.0)
530.6 (a, 25.9)
541.2 (a, 48.8)
555.3 (a, 21.3)
558.6 (a, 7.9)
584.8 (a, 20.2)
1458.0 (a, 301.5)
1727.5 (a, 700.0)
1732.4 (a, 1705.1)
1751.5 (a, 291.5)
1910.2 (a, 702.5)
1985.4 (a, 1133.4)
2026.2 (a, 771.5)

Table S16.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)3 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

3T-5 / 3T-6 / 3T-7 / 3T-8
21.3 (a", 0.0)
33.9 (a', 0.2)
39.0 (a", 0.0)
46.6 (a', 0.3)
54.6 (a', 0.8)
58.2 (a", 0.0)
66.9 (a', 0.6)
71.1 (a', 0.1)
77.1 (a", 0.1)
80.0 (a', 0.1)
80.5 (a", 0.1)
81.2 (a', 0.0)
83.2 (a", 0.0)
125.0 (a', 2.0)
329.3 (a", 0.1)
335.7 (a", 0.0)
354.5 (a", 0.0)
365.8 (a', 2.1)
366.8 (a", 0.4)
386.7 (a', 0.0)
399.8 (a", 0.1)
420.5 (a", 29.4)
428.7 (a', 8.7)
440.3 (a', 14.4)
450.6 (a', 10.4)
467.9 (a', 0.9)
476.4 (a", 55.1)
508.6 (a", 5.5)
523.5 (a', 2.8)
525.2 (a", 9.5)
530.0 (a', 20.0)
545.7 (a', 7.8)
555.3 (a', 26.2)
560.0 (a', 12.4)
574.6 (a', 146.4)
1682.2 (a", 672.7)
1725.7 (a', 802.8)
1746.1 (a", 1408.1)
1774.7 (a', 169.0)
1956.2 (a', 1034.7)
1967.6 (a', 680.5)
2016.5 (a', 918.0) / 19.0 (b, 0.0)
27.3 (a, 0.0)
50.1 (a, 0.0)
56.1 (b, 0.4)
58.2 (a, 0.4)
64.4 (b, 0.1)
68.0 (a, 0.3)
72.0 (a, 0.0)
72.2 (b, 0.0)
80.7 (a, 0.0)
81.2 (b, 0.3)
86.4 (b, 0.1)
136.2 (a, 0.2)
207.7 (b, 0.8)
241.8 (b, 54.0)
296.4 (a, 0.8)
303.5 (b, 10.3)
346.2 (b, 0.1)
358.0 (a, 2.1)
373.2 (a, 1.6)
377.7 (b, 12.0)
411.3 (a, 8.9)
421.3 (b, 21.4)
439.4 (a, 0.0)
443.4 (b, 28.7)
449.0 (a, 1.9)
467.4 (b, 27.6)
502.8 (a, 14.0)
517.0 (b, 2.8)
526.6 (a, 19.8)
535.6 (b, 146.3)
539.3 (a, 0.0)
543.3 (b, 16.3)
564.2 (b, 12.5)
564.7 (a, 0.3)
1719.5 (a, 437.9)
1724.0 (b, 746.6)
1738.1 (b, 1617.4)
1760.1 (a, 979.6)
1792.6 (a, 12.7)
1996.4 (b, 1528.4)
2009.8 (a, 453.8) / 21.4 (a", 0.2)
37.9 (a", 0.1)
43.7 (a', 0.4)
59.2 (a', 0.8)
63.2 (a', 1.0)
66.2 (a", 0.1)
71.9 (a', 0.0)
75.3 (a', 0.3)
75.8 (a", 0.1)
76.6 (a", 0.3)
87.0 (a", 0.0)
109.8 (a', 0.1)
127.5 (a', 0.2)
231.4 (a', 0.7)
291.5 (a", 0.0)
297.0 (a', 2.7)
306.7 (a", 0.1)
329.2 (a", 1.7)
360.0 (a', 8.9)
383.5 (a", 0.3)
395.4 (a', 2.5)
397.4 (a", 0.9)
417.4 (a", 28.6)
433.0 (a', 19.9)
446.5 (a', 3.3)
467.5 (a', 19.6)
472.2 (a", 7.8)
496.5 (a', 64.5)
512.2 (a", 5.0)
519.5 (a', 22.7)
529.1 (a', 30.0)
532.8 (a", 8.9)
548.1 (a', 3.1)
553.9 (a', 14.1)
572.0 (a', 14.0)
1698.0 (a", 487.9)
1721.3 (a', 965.4)
1728.6 (a", 1649.4)
1755.8 (a', 704.3)
1781.6 (a', 54.7)
1897.8 (a', 670.9)
2014.4 (a', 1009.4) / 16.2 (a, 0.2)
24.7 (a, 0.1)
42.7 (a, 0.9)
55.2 (a, 0.0)
63.7 (a, 0.0)
66.4 (a, 0.4)
69.3 (a, 0.4)
72.0 (a, 0.1)
76.1 (a, 0.1)
77.5 (a, 0.0)
83.3 (a, 0.1)
91.0 (a, 0.4)
115.9 (a, 0.1)
183.5 (a, 1.1)
274.3 (a, 1.8)
306.5 (a, 0.5)
329.9 (a, 1.4)
333.1 (a, 3.2)
345.6 (a, 0.6)
359.3 (a, 3.1)
372.8 (a, 3.7)
380.3 (a, 8.2)
400.9 (a, 4.7)
410.0 (a, 4.0)
413.0 (a, 42.5)
450.4 (a, 13.8)
477.0 (a, 20.5)
501.4 (a, 76.4)
508.6 (a, 24.3)
524.6 (a, 4.7)
531.9 (a, 11.2)
548.8 (a, 14.6)
553.9 (a, 31.2)
565.3 (a, 14.9)
574.2 (a, 60.3)
1710.8 (a, 766.8)
1722.3 (a, 1242.4)
1731.0 (a, 986.6)
1748.1 (a, 899.0)
1781.9 (a, 767.9)
1963.4 (a, 564.8)
1994.7 (a, 731.3)

Table S17.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)2 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

2S-1 / 2S-2 / 2S-3 / 2S-4
25.0 (a, 0.5)
40.0 (a, 0.1)
50.4 (b, 1.6)
63.6 (b, 0.3)
72.8 (b, 0.8)
72.9 (a, 0.5)
77.5 (a, 0.0)
84.0 (b, 0.0)
94.9 (a, 1.7)
179.9 (a, 0.0)
188.8 (b, 4.7)
233.6 (a, 0.0)
280.8 (a, 0.0)
337.9 (b, 3.3)
359.9 (a, 0.4)
402.3 (b, 20.7)
408.6 (a, 0.2)
413.4 (b, 9.6)
446.2 (b, 0.2)
458.2 (a, 2.0)
471.3 (a, 31.1)
482.3 (b, 9.3)
485.3 (a, 1.1)
521.4 (b, 34.5)
539.3 (a, 4.1)
546.3 (b, 18.3)
571.2 (b, 1.6)
574.4 (a, 11.3)
582.2 (a, 0.2)
641.9 (b, 26.8)
1551.1 (b, 865.5)
1554.9 (a, 7.9)
1743.8 (b, 1334.1)
1761.6 (a, 1089.5)
1968.8 (b, 1231.1)
1991.6 (a, 988.6) / 27.6 (au, 1.2)
32.8 (au, 0.2)
52.6 (au, 2.6)
64.6 (ag, 0.0)
77.3 (ag, 0.0)
78.6 (ag, 0.0)
81.6 (ag, 0.0)
83.3 (au, 0.7)
98.0 (au, 2.0)
173.5 (ag, 0.0)
185.8 (au, 4.3)
231.4 (ag, 0.0)
305.6 (au, 3.6)
343.8 (ag, 0.0)
366.6 (au, 2.4)
385.9 (ag, 0.0)
407.0 (au, 23.2)
410.7 (ag, 0.0)
454.3 (au, 41.0)
482.8 (au, 19.2)
484.3 (ag, 0.0)
492.5 (ag, 0.0)
500.7 (au, 2.1)
531.8 (au, 60.6)
536.1 (ag, 0.0)
544.1 (ag, 0.0)
562.3 (ag, 0.0)
566.6 (au, 4.9)
606.7 (ag, 0.0)
626.2 (au, 41.3)
1549.5 (au, 870.6)
1555.9 (ag, 0.0)
1751.0 (au, 2297.4)
1763.2 (ag, 0.0)
1966.5 (au, 2341.8)
1987.3 (ag, 0.0) / 33.8 (a, 0.1)
43.3 (a, 0.0)
63.5 (a, 0.2)
68.8 (a, 0.5)
74.9 (a, 1.5)
81.7 (a, 0.5)
83.5 (a, 0.1)
91.7 (a, 0.2)
101.7 (a, 2.0)
143.8 (a, 10.2)
170.1 (a, 5.4)
228.5 (a, 1.6)
311.5 (a, 0.9)
361.9 (a, 6.3)
371.8 (a, 6.4)
398.5 (a, 3.1)
415.0 (a, 10.4)
438.1 (a, 10.0)
452.5 (a, 19.4)
460.4 (a, 27.3)
477.6 (a, 0.0)
509.2 (a, 42.0)
517.1 (a, 6.2)
532.9 (a, 30.2)
559.0 (a, 28.9)
564.8 (a, 0.4)
576.9 (a, 104.9)
581.3 (a, 7.5)
611.2 (a, 1.0)
654.0 (a, 67.7)
1344.4 (a, 286.1)
1584.1 (a, 427.6)
1766.9 (a, 1263.1)
1778.8 (a, 579.4)
1979.9 (a, 1864.0)
1993.7 (a, 113.4) / 28.6 (a", 0.2)
43.0 (a", 0.2)
53.0 (a', 0.5)
55.0 (a", 0.1)
73.3 (a', 0.3)
75.3 (a", 0.2)
76.9 (a', 0.4)
84.2 (a', 0.0)
96.9 (a", 1.0)
178.7 (a', 1.0)
195.2 (a', 0.0)
231.1 (a', 0.1)
265.8 (a", 0.4)
333.0 (a', 0.6)
336.2 (a", 0.2)
390.0 (a", 2.5)
424.4 (a', 12.6)
427.2 (a", 1.0)
433.7 (a', 6.4)
482.1 (a', 23.4)
485.8 (a", 0.1)
487.9 (a', 54.3)
496.0 (a', 9.1)
501.9 (a", 38.7)
517.3 (a", 6.5)
547.5 (a", 9.5)
549.9 (a', 1.3)
574.0 (a', 6.9)
620.7 (a', 66.1)
670.0 (a', 120.7)
1519.0 (a', 554.0)
1567.2 (a', 262.7)
1736.6 (a", 1006.8)
1778.9 (a', 1133.6)
1943.3 (a", 1022.8)
1987.3 (a', 1073.0)

Table S18.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)2 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

2S-5 / 2S-6 / 2S-7
22.4 (a, 0.0)
34.8 (a, 0.1)
37.6 (b, 0.4)
58.4 (b, 0.5)
59.7 (a, 0.1)
73.8 (b, 0.4)
75.6 (b, 0.0)
78.2 (a, 0.0)
80.7 (a, 0.2)
82.2 (b, 1.0)
82.8 (a, 0.5)
159.1 (a, 0.2)
330.4 (a, 0.1)
332.7 (b, 0.5)
342.1 (a, 2.1)
360.3 (b, 28.1)
378.4 (a, 0.8)
393.7 (b, 6.8)
397.9 (b, 12.9)
412.0 (a, 4.6)
443.2 (a, 20.7)
446.1 (b, 3.0)
464.3 (b, 107.8)
497.0 (a, 0.1)
531.1 (a, 10.1)
559.4 (b, 0.5)
562.4 (a, 1.5)
565.0 (b, 4.8)
612.9 (a, 0.0)
620.0 (b, 7.8)
1716.2 (b, 970.8)
1722.0 (a, 569.1)
1740.5 (b, 1039.9)
1764.6 (a, 872.4)
1985.4 (b, 1600.3)
1998.6 (a, 466.9) / 13.5 (au, 0.1)
36.6 (au, 0.1)
43.9 (bg, 0.0)
47.7 (bu, 1.3)
68.9 (ag, 0.0)
72.5 (bg, 0.0)
73.9 (au, 0.4)
75.0 (ag, 0.0)
78.3 (bu, 1.7)
169.8 (bu, 0.1)
173.4 (ag, 0.0)
199.3 (ag, 0.0)
294.4 (au, 3.9)
307.2 (ag, 0.0)
321.2 (au, 0.2)
333.4 (bg, 0.0)
335.2 (bu, 39.9)
387.9 (bg, 0.0)
391.4 (bu, 206.4)
442.1 (ag, 0.0)
454.1 (au, 37.9)
469.4 (bu, 13.6)
494.0 (ag, 0.0)
520.8 (bg, 0.0)
539.7 (ag, 0.0)
544.0 (au, 18.3)
545.4 (bg, 0.0)
550.6 (bu, 20.7)
556.4 (ag, 0.0)
569.0 (bu, 49.5)
1734.2 (bg, 0.0)
1744.0 (au, 2128.8)
1770.5 (bu, 1858.4)
1778.5 (ag, 0.0)
1837.5 (bu, 1122.1)
1837.7 (ag, 0.0) / 24.3 (au, 1.8)
38.6 (au, 0.0)
58.9 (bg, 0.0)
61.0 (bu, 1.5)
66.0 (ag, 0.0)
73.6 (bu, 2.0)
79.7 (ag, 0.0)
87.8 (bg, 0.0)
94.7 (au, 0.1)
143.1 (bu, 3.4)
143.1 (ag, 0.0)
164.7 (ag, 0.0)
205.8 (au, 7.5)
235.8 (bg, 0.0)
315.1 (au, 12.9)
322.6 (ag, 0.0)
365.6 (bg, 0.0)
410.0 (bu, 84.6)
420.0 (bg, 0.0)
494.8 (bu, 79.6)
497.7 (au, 45.2)
500.0 (ag, 0.0)
530.9 (bu, 170.2)
540.5 (bg, 0.0)
544.0 (au, 0.9)
552.1 (ag, 0.0)
560.5 (bu, 7.8)
566.8 (ag, 0.0)
601.0 (ag, 0.0)
606.4 (bu, 126.3)
1718.9 (bg, 0.0)
1723.6 (au, 2181.9)
1729.4 (bu, 2240.5)
1752.6 (ag, 0.0)
1788.9 (bu, 819.3)
1820.4 (ag, 0.0)

Table S19.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)2using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

2T-1 / 2T-2 / 2T-3 / 2T-4 / 2T-5
33.6 (a', 0.1)
39.6 (a", 0.0)
56.1 (a', 0.1)
64.0 (a", 0.0)
70.1 (a', 0.3)
72.7 (a", 0.1)
75.1 (a', 0.1)
78.9 (a", 0.0)
96.9 (a', 1.3)
188.4 (a', 0.0)
204.0 (a", 0.0)
238.4 (a", 2.2)
295.6 (a', 1.0)
322.1 (a", 0.0)
351.6 (a', 0.8)
397.6 (a", 5.4)
404.0 (a', 6.1)
411.6 (a", 4.9)
429.7 (a', 3.6)
433.2 (a", 6.0)
455.6 (a', 1.1)
465.0 (a', 16.7)
484.7 (a', 5.3)
498.1 (a', 9.8)
502.7 (a", 5.4)
539.1 (a", 23.6)
544.2 (a', 9.5)
553.0 (a', 10.3)
559.7 (a", 39.4)
638.7 (a", 133.4)
1486.1 (a', 460.2)
1559.9 (a', 301.8)
1730.3 (a", 967.6)
1745.1 (a', 1023.8)
1962.6 (a", 980.2)
1988.2 (a', 1013.4) / 14.6 (au, 0.1)
39.9 (au, 0.3)
50.9 (au, 0.2)
52.9 (ag, 0.0)
72.1 (ag, 0.0)
76.6 (ag, 0.0)
77.3 (ag, 0.0)
82.1 (au, 0.1)
90.6 (au, 2.1)
192.1 (ag, 0.0)
201.0 (au, 0.4)
236.6 (ag, 0.0)
317.6 (ag, 0.0)
318.7 (au, 0.3)
332.3 (au, 5.3)
357.6 (au, 5.1)
383.4 (ag, 0.0)
407.5 (ag, 0.0)
428.8 (ag, 0.0)
434.6 (au, 23.5)
456.5 (ag, 0.0)
467.5 (au, 19.2)
476.4 (au, 9.9)
478.3 (ag, 0.0)
511.3 (ag, 0.0)
532.6 (ag, 0.0)
540.2 (au, 30.0)
560.2 (au, 11.4)
564.8 (ag, 0.0)
662.3 (au, 145.5)
1504.4 (au, 709.4)
1523.2 (ag, 0.0)
1735.4 (au, 1864.9)
1741.7 (ag, 0.0)
1974.8 (au, 2294.4)
1990.0 (ag, 0.0) / 31.2 (au, 0.1)
35.1 (bu, 0.7)
57.1 (au, 0.0)
57.4 (ag, 0.0)
64.8 (bu, 1.4)
66.9 (bg, 0.0)
67.4 (ag, 0.0)
72.0 (bu, 0.8)
73.4 (au, 0.3)
74.7 (bg, 0.0)
75.6 (ag, 0.0)
183.7 (ag, 0.0)
321.8 (bg, 0.0)
333.0 (au, 0.0)
334.2 (bu, 47.9)
351.4 (bg, 0.0)
362.4 (ag, 0.0)
374.5 (au, 7.6)
426.9 (au, 5.8)
427.1 (ag, 0.0)
434.9 (bg, 0.0)
435.6 (bu, 22.8)
490.5 (bu, 95.0)
495.3 (ag, 0.0)
500.8 (au, 32.2)
511.6 (bu, 23.0)
520.7 (ag, 0.0)
524.7 (bg, 0.0)
563.9 (bu, 2.6)
570.9 (ag, 0.0)
1673.7 (bg, 0.0)
1693.7 (au, 2224.2)
1715.8 (bu, 1315.7)
1748.2 (ag, 0.0)
1982.1 (bu, 1926.8)
1990.3 (ag, 0.0) / 26.0 (a", 0.2)
49.4 (a", 0.0)
56.8 (a', 0.8)
61.7 (a", 0.0)
69.8 (a', 0.1)
74.0 (a', 0.0)
74.4 (a", 0.3)
80.9 (a', 0.3)
97.8 (a", 1.5)
175.0 (a", 1.1)
182.8 (a', 0.2)
196.1 (a', 0.5)
238.8 (a', 0.7)
293.2 (a", 0.2)
306.4 (a", 0.7)
359.6 (a', 3.0)
382.7 (a', 3.8)
384.1 (a", 0.5)
405.3 (a', 14.9)
421.1 (a", 0.0)
435.4 (a', 9.1)
473.5 (a", 1.3)
474.7 (a', 1.3)
489.0 (a", 10.2)
498.7 (a', 8.9)
505.6 (a', 0.1)
506.9 (a", 15.6)
540.6 (a', 0.1)
557.1 (a', 30.0)
671.6 (a', 82.6)
1485.3 (a', 546.8)
1564.4 (a', 240.5)
1684.2 (a", 884.0)
1717.1 (a', 1003.0)
1946.8 (a", 1016.5)
1989.4 (a', 1105.1) / 25.8 (a", 0.0)
28.4 (a", 0.2)
51.0 (a', 1.1)
60.1 (a", 0.0)
61.1 (a', 0.5)
65.7 (a', 0.2)
73.3 (a", 0.0)
76.6 (a', 0.0)
81.5 (a", 0.7)
132.4 (a', 0.2)
160.1 (a', 0.2)
216.8 (a', 0.2)
261.8 (a", 2.2)
288.1 (a", 0.3)
320.7 (a', 1.2)
326.6 (a", 1.2)
359.9 (a', 6.5)
370.7 (a", 1.9)
418.1 (a', 0.7)
425.2 (a", 19.5)
448.0 (a', 19.4)
458.2 (a", 2.0)
477.1 (a', 1.0)
492.7 (a', 22.1)
517.4 (a', 2.4)
520.8 (a", 5.4)
537.0 (a", 7.6)
543.9 (a', 2.3)
560.9 (a', 24.6)
582.5 (a', 24.3)
1705.1 (a", 483.0)
1723.0 (a', 1917.9)
1728.7 (a", 1472.4)
1751.2 (a', 337.7)
1810.9 (a', 743.2)
1824.5 (a', 292.0)

Table S20.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

S-1 / S-2 / S-3 / S-4
24.8 (a, 0.1)
41.6 (a, 0.2)
51.1 (a, 0.8)
60.7 (a, 0.4)
77.4 (a, 0.3)
79.6 (a, 0.4)
82.3 (a, 0.2)
84.4 (a, 0.5)
95.4 (a, 1.1)
169.7 (a, 1.2)
311.7 (a, 0.1)
325.0 (a, 0.3)
351.8 (a, 1.6)
358.2 (a, 2.3)
374.2 (a, 11.1)
430.4 (a, 8.3)
453.8 (a, 14.5)
480.8 (a, 8.7)
526.1 (a, 40.6)
545.7 (a, 10.6)
560.3 (a, 4.0)
577.9 (a, 2.4)
581.5 (a, 0.7)
617.3 (a, 1.6)
652.0 (a, 7.0)
1697.1 (a, 789.9)
1721.8 (a, 577.7)
1732.0 (a, 1414.3)
1764.6 (a, 604.4)
1996.6 (a, 873.6) / 40.2 (a', 0.1)
46.3 (a", 0.0)
58.5 (a", 0.2)
67.8 (a", 0.9)
68.5 (a', 1.9)
80.1 (a', 0.6)
92.1 (a', 2.1)
189.7 (a', 2.1)
211.3 (a', 0.1)
220.2 (a", 0.0)
298.7 (a", 1.8)
336.1 (a", 0.1)
345.9 (a', 2.7)
409.8 (a", 0.3)
438.1 (a', 3.7)
462.2 (a', 2.3)
471.5 (a', 16.3)
474.8 (a", 2.1)
504.1 (a', 11.7)
514.6 (a", 0.0)
553.2 (a', 23.8)
580.7 (a', 2.4)
584.8 (a', 2.0)
602.3 (a", 3.1)
654.3 (a', 3.6)
1526.9 (a", 926.8)
1531.7 (a', 12.4)
1716.8 (a', 1070.0)
1747.2 (a', 977.7)
1974.1 (a', 1105.4) / 43.5 (a', 0.6)
46.9 (a", 0.5)
48.9 (a", 0.5)
68.6 (a', 1.8)
74.6 (a", 0.1)
86.3 (a', 0.5)
89.1 (a', 1.5)
184.8 (a', 3.3)
186.2 (a", 0.1)
212.7 (a', 1.2)
319.6 (a", 2.6)
363.5 (a', 7.6)
375.7 (a", 1.3)
422.9 (a", 17.2)
434.5 (a", 0.7)
443.3 (a', 7.0)
470.7 (a', 22.4)
479.6 (a", 2.6)
481.4 (a', 5.9)
525.6 (a', 3.6)
566.1 (a', 21.8)
583.9 (a', 2.2)
590.1 (a', 7.6)
596.6 (a", 31.3)
672.0 (a', 69.1)
1513.9 (a", 868.0)
1523.2 (a', 78.7)
1727.1 (a', 1074.3)
1750.1 (a', 666.2)
1975.3 (a', 897.4) / -14.9 (a", 0.4)
42.3 (a", 0.0)
47.7 (a', 1.1)
61.5 (a", 0.0)
76.4 (a', 0.6)
79.9 (a', 0.1)
80.2 (a", 0.1)
84.7 (a', 0.3)
110.2 (a', 0.2)
209.6 (a', 0.7)
276.3 (a", 1.1)
320.8 (a', 5.1)
327.1 (a", 0.8)
333.8 (a", 6.2)
387.9 (a', 146.4)
391.5 (a", 0.4)
450.4 (a", 26.5)
471.8 (a', 52.0)
499.3 (a', 4.9)
527.7 (a', 44.9)
541.2 (a", 5.3)
552.4 (a', 15.0)
559.3 (a", 2.2)
570.7 (a', 23.6)
591.6 (a', 2.5)
1714.2 (a", 28.8)
1730.9 (a", 1929.6)
1753.1 (a', 1296.9)
1778.0 (a', 501.4)
1865.4 (a', 536.5)

Table S21.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

S-5 / S-6 / S-7
8.2 (a, 0.2)
37.5 (a, 0.5)
48.0 (a, 0.2)
63.9 (a, 0.0)
70.8 (a, 0.1)
74.4 (a, 0.4)
80.5 (a, 0.6)
88.5 (a, 0.4)
103.5 (a, 0.6)
191.4 (a, 4.3)
308.8 (a, 1.0)
331.0 (a, 1.0)
343.7 (a, 6.1)
395.9 (a, 2.2)
413.5 (a, 11.5)
443.7 (a, 10.2)
470.4 (a, 89.2)
509.9 (a, 69.8)
523.6 (a, 29.4)
529.9 (a, 1.2)
533.3 (a, 1.3)
540.9 (a, 47.8)
551.6 (a, 0.3)
564.3 (a, 12.0)
618.3 (a, 1.1)
1702.8 (a, 930.1)
1714.6 (a, 854.9)
1750.2 (a, 1215.1)
1776.0 (a, 624.9)
1963.4 (a, 780.5) / 39.4 (a', 0.1)
45.0 (a", 0.1)
58.9 (a", 0.4)
65.8 (a", 0.2)
69.5 (a', 3.4)
81.9 (a', 0.0)
97.0 (a', 1.7)
192.7 (a', 5.2)
211.1 (a', 0.3)
217.5 (a", 0.0)
270.5 (a", 0.1)
323.8 (a', 1.9)
369.7 (a", 1.4)
377.5 (a', 77.9)
409.0 (a", 0.0)
431.4 (a', 10.6)
447.9 (a", 0.6)
478.2 (a", 0.9)
489.9 (a', 11.1)
499.7 (a', 24.7)
517.2 (a', 20.5)
543.7 (a', 4.7)
564.3 (a', 3.8)
653.9 (a", 16.6)
736.1 (a', 65.9)
1512.6 (a", 871.3)
1529.6 (a', 36.0)
1729.2 (a', 947.5)
1771.1 (a', 1052.9)
1926.3 (a', 1039.7) / 26.5 (a", 0.0)
30.6 (a", 0.1)
41.4 (a', 0.1)
57.3 (a', 0.1)
63.6 (a', 0.5)
68.3 (a', 0.1)
71.7 (a", 0.1)
73.7 (a", 0.1)
85.3 (a', 0.1)
205.1 (a', 0.6)
287.6 (a', 7.1)
344.9 (a', 4.8)
348.6 (a", 0.1)
351.7 (a", 0.2)
394.7 (a", 12.8)
425.2 (a", 19.0)
427.1 (a', 28.6)
446.7 (a', 15.4)
481.5 (a", 38.7)
508.1 (a', 2.6)
519.9 (a", 0.1)
538.6 (a', 21.8)
546.7 (a', 1.4)
565.4 (a', 0.8)
581.3 (a', 1.1)
1716.3 (a", 1165.1)
1733.4 (a', 698.7)
1748.8 (a', 1306.0)
1790.0 (a', 470.5)
1979.0 (a', 887.7)

Table S22.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4(CO)using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

T-1 / T-2 / T-3 / T-4 / T-5
21.5 (a, 0.3)
42.4 (a, 0.2)
54.3 (a, 0.1)
61.2 (a, 1.2)
66.0 (a, 0.5)
77.3 (a, 0.4)
80.4 (a, 0.0)
83.7 (a, 0.2)
90.9 (a, 0.7)
167.0 (a, 1.4)
285.1 (a, 8.1)
296.6 (a, 0.3)
322.3 (a, 17.2)
348.8 (a, 2.0)
352.6 (a, 2.0)
396.1 (a, 8.9)
416.8 (a, 12.3)
462.8 (a, 6.6)
488.7 (a, 17.1)
508.5 (a, 49.8)
513.3 (a, 8.1)
551.9 (a, 3.6)
560.9 (a, 1.3)
568.0 (a, 3.7)
632.1 (a, 3.6)
1681.4 (a, 647.9)
1686.2 (a, 1009.8)
1711.9 (a, 1479.4)
1745.2 (a, 326.6)
1960.1 (a, 814.9) / 14.4 (a", 0.4)
44.5 (a', 0.9)
53.9 (a", 0.0)
56.7 (a', 0.4)
69.1 (a', 0.5)
69.6 (a", 0.0)
71.9 (a", 0.1)
80.5 (a', 0.0)
96.0 (a', 0.2)
195.9 (a', 0.6)
276.1 (a", 0.3)
288.7 (a", 0.0)
325.9 (a', 4.5)
328.9 (a", 1.4)
361.4 (a", 0.0)
411.6 (a", 29.0)
458.7 (a', 37.5)
475.6 (a', 25.1)
483.5 (a', 2.8)
503.5 (a", 8.0)
511.5 (a', 6.9)
537.4 (a', 9.1)
549.9 (a", 1.4)
554.3 (a', 8.7)
604.6 (a', 5.5)
1687.0 (a", 198.1)
1708.4 (a', 1164.2)
1712.8 (a", 1629.1)
1755.7 (a', 573.3)
1899.1 (a', 669.9) / 26.7 (a, 0.2)
41.6 (a, 0.9)
57.5 (a, 0.7)
63.8 (a, 0.2)
72.3 (a, 0.3)
76.0 (a, 0.1)
90.7 (a, 1.8)
182.8 (a, 0.6)
191.9 (a, 0.5)
228.3 (a, 1.0)
317.5 (a, 2.4)
332.9 (a, 4.8)
340.2 (a, 1.4)
381.8 (a, 3.0)
403.8 (a, 5.4)
432.1 (a, 10.4)
447.3 (a, 3.0)
461.7 (a, 20.1)
482.6 (a, 10.7)
502.9 (a, 1.5)
506.9 (a, 14.1)
554.8 (a, 3.4)
561.0 (a, 2.5)
568.8 (a, 7.3)
646.3 (a, 39.4)
1503.3 (a, 555.9)
1531.6 (a, 245.4)
1712.1 (a, 1368.8)
1748.3 (a, 859.7)
1974.7 (a, 1109.6) / 26.8 (a, 0.8)
36.3 (a, 1.2)
49.8 (a, 0.1)
56.0 (a, 0.1)
77.6 (a, 0.0)
81.6 (a, 0.0)
88.2 (a, 1.2)
178.8 (a, 0.1)
186.2 (a, 0.3)
223.3 (a, 0.1)
318.6 (a, 1.9)
330.0 (a, 1.8)
343.0 (a, 5.1)
379.9 (a, 6.7)
390.8 (a, 8.2)
412.5 (a, 4.4)
442.4 (a, 4.8)
465.7 (a, 11.2)
481.7 (a, 2.7)
487.7 (a, 3.7)
497.2 (a, 27.7)
546.0 (a, 6.9)
570.7 (a, 6.4)
584.5 (a, 3.0)
627.8 (a, 41.6)
1506.7 (a, 783.1)
1520.5 (a, 13.3)
1727.9 (a, 1763.4)
1749.7 (a, 463.1)
1971.1 (a, 1007.6) / 13.3 (a", 0.1)
30.3 (a", 0.8)
30.4 (a', 0.4)
54.3 (a', 0.4)
59.8 (a", 0.4)
62.0 (a', 0.1)
65.2 (a", 0.0)
70.0 (a', 0.1)
89.4 (a', 0.3)
160.0 (a', 5.9)
310.4 (a", 0.2)
312.1 (a", 0.0)
325.4 (a', 0.6)
390.1 (a', 2.2)
409.9 (a", 0.2)
439.3 (a", 0.0)
492.7 (a', 51.5)
493.2 (a", 44.7)
508.7 (a', 27.4)
517.1 (a", 18.0)
519.2 (a', 4.7)
529.1 (a', 9.3)
544.3 (a', 0.5)
567.8 (a', 14.2)
627.9 (a', 0.7)
1704.7 (a', 840.4)
1710.5 (a", 1112.5)
1747.6 (a', 1215.6)
1766.7 (a', 176.8)
1962.3 (a', 718.3)

Table S23.Theoretical harmonic vibrational frequencies (in cm–1) for singlet structures of Re2(NO)4 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

0S-1 / 0S-2
19.8 (a, 0.4)
61.9 (b, 3.0)
64.1 (a, 0.0)
79.5 (b, 0.9)
83.1 (a, 0.0)
90.2 (b, 1.3)
96.0 (a, 0.7)
176.4 (a, 0.2)
312.0 (a, 2.9)
316.5 (b, 1.0)
351.1 (a, 3.2)
358.0 (b, 2.7)
462.1 (a, 1.1)
507.8 (b, 7.3)
572.7 (b, 0.4)
575.1 (a, 0.1)
584.8 (a, 0.2)
585.9 (b, 0.1)
659.4 (a, 0.1)
660.8 (b, 1.6)
1682.1 (b, 710.9)
1693.8 (a, 869.8)
1712.3 (b, 1241.7)
1753.2 (a, 385.0) / 52.9 (a1, 0.0)
58.1 (a2, 0.0)
71.6 (b1, 2.7)
78.6 (b2, 2.2)
90.6 (a1, 2.2)
186.1 (b1, 0.1)
215.2 (a2, 0.0)
230.5 (a1, 1.4)
281.7 (b2, 7.9)
284.7 (a2, 0.0)
365.3 (a1, 2.1)
453.1 (b2, 0.7)
464.5 (a1, 1.4)
481.0 (b1, 21.7)
573.5 (a1, 0.0)
579.1 (a2, 0.0)
594.0 (b1, 4.8)
601.8 (a1, 0.4)
606.6 (b2, 0.0)
616.2 (b1, 12.1)
1510.8 (a1, 38.8)
1513.9 (b2, 955.8)
1700.3 (b1, 808.0)
1734.7 (a1, 837.9)

Table S24.Theoretical harmonic vibrational frequencies (in cm–1) for triplet structures of Re2(NO)4 using the BP86/SDD method(infrared intensities in parentheses are in km/mol).

0T-1 / 0T-2 / 0T-3 / 0T-4
16.5 (a", 0.7)
29.1 (a', 2.0)
54.2 (a", 0.0)
64.0 (a", 0.0)
78.8 (a', 1.1)
82.2 (a', 0.7)
96.9 (a', 0.0)
184.0 (a', 0.2)
254.8 (a', 18.7)
265.8 (a", 0.1)
296.2 (a", 0.0)
302.5 (a", 0.0)
337.4 (a", 11.3)
497.2 (a', 10.7)
509.3 (a', 50.6)
550.3 (a", 0.2)
561.2 (a", 0.1)
579.3 (a', 0.1)
605.0 (a', 13.6)
624.4 (a', 0.5)
1673.5 (a", 3.0)
1693.2 (a", 1678.4)
1704.7 (a', 1769.1)
1736.1 (a', 0.1) / 27.2 (au, 1.4)
45.5 (au, 2.6)
68.9 (ag, 0.0)
81.2 (au, 1.9)
89.5 (ag, 0.0)
158.8 (au, 1.6)
178.1 (ag, 0.0)
194.4 (ag, 0.0)
282.5 (au, 3.4)
364.3 (ag, 0.0)
373.9 (ag, 0.0)
376.1 (au, 11.9)
463.1 (ag, 0.0)
473.2 (au, 3.5)
500.6 (ag, 0.0)
511.1 (au, 2.3)
572.3 (ag, 0.0)
587.2 (au, 3.3)
611.0 (ag, 0.0)
647.9 (au, 27.5)
1508.0 (au, 816.1)
1517.2 (ag, 0.0)
1726.0 (au, 2318.6)
1747.0 (ag, 0.0) / 28.6 (a', 0.9)
50.1 (a', 0.1)
54.1 (a", 3.8)
65.3 (a", 0.2)
88.7 (a', 3.9)
201.3 (a", 0.7)
205.4 (a', 2.5)
229.2 (a", 0.0)
272.5 (a', 1.1)
363.7 (a', 4.2)
380.4 (a", 0.0)
421.7 (a', 1.2)
450.7 (a", 22.1)
485.1 (a', 2.9)
498.2 (a', 1.3)
552.2 (a", 5.0)
562.1 (a", 1.8)
562.3 (a', 0.3)
581.8 (a', 1.6)
666.9 (a", 25.9)
1489.4 (a', 840.7)
1510.3 (a', 36.9)
1696.1 (a", 1252.7)
1725.6 (a', 736.9) / 25.8 (au, 2.5)
37.6 (bg, 0.0)
57.4 (bu, 3.4)
63.9 (au, 4.3)
85.5 (ag, 0.0)
139.9 (ag, 0.0)
176.9 (bu, 0.6)
214.3 (ag, 0.0)
328.4 (bg, 0.0)
339.7 (ag, 0.0)
348.2 (au, 0.1)
418.1 (bu, 4.9)
458.4 (bg, 0.0)
461.6 (au, 9.4)
526.4 (ag, 0.0)
550.5 (bu, 12.1)
575.4 (ag, 0.0)
589.2 (bu, 0.1)
631.1 (bu, 0.9)
677.1 (ag, 0.0)
1516.1 (ag, 0.0)
1521.0 (bu, 716.2)
1745.2 (bu, 2378.7)
1768.4 (ag, 0.0)

Table S25.Theoretical Cartesian coordinates (in Å) for the structure 4S-1using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.876195 1.223452 0.000000

2 75 -0.876195 -1.223452 0.000000

3 8 3.011532 -1.081593 0.000000

4 8 -3.115842 -3.396359 0.000000

5 8 0.231112 -1.848137 2.721458

6 8 3.115842 3.396359 0.000000

7 8 -0.231112 1.848137 2.721458

8 8 -3.011532 1.081593 0.000000

9 8 -0.231112 1.848137 -2.721458

10 8 0.231112 -1.848137 -2.721458

11 7 -0.231112 -1.587306 -1.675278

12 7 -0.231112 -1.587306 1.675278

13 7 0.231112 1.587306 1.675278

14 7 0.231112 1.587306 -1.675278

15 6 -2.289601 -2.595654 0.000000

16 6 -2.226454 0.239926 0.000000

17 6 2.226454 -0.239926 0.000000

18 6 2.289601 2.595654 0.000000

------

Table S26.Theoretical Cartesian coordinates (in Å) for the structure 4S-2using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 0.000000 2.013595 -1.288672

2 6 -1.414520 0.000000 -2.660646

3 6 1.414520 0.000000 -2.660646

4 6 0.000000 -2.013595 -1.288672

5 8 0.000000 3.159594 -1.298638

6 8 -2.252543 0.000000 -3.450155

7 8 2.252543 0.000000 -3.450155

8 8 2.719860 0.000000 0.320814

9 8 0.000000 2.351135 3.430828

10 8 0.000000 -3.159594 -1.298638

11 8 0.000000 -2.351135 3.430828

12 8 -2.719860 0.000000 0.320814

13 75 0.000000 0.000000 -1.310901

14 75 0.000000 0.000000 1.594729

15 7 0.000000 1.492009 2.622435

16 7 0.000000 -1.492009 2.622435

17 7 1.520534 0.000000 0.381788

18 7 -1.520534 0.000000 0.381788

------

Table S27. Theoretical Cartesian coordinates (in Å) for the structure 4S-3using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.099363 1.508685 -0.051616

2 75 0.099363 -1.508685 -0.051616

3 8 -0.600954 4.586168 0.061618

4 8 -1.674246 0.990139 -2.556462

5 8 -2.879332 -1.601587 0.310704

6 8 1.674246 -0.990139 -2.556462

7 8 -1.710497 1.036068 2.603553

8 8 1.710497 -1.036068 2.603553

9 8 2.879332 1.601587 0.310704

10 8 0.600954 -4.586168 0.061618

11 6 -1.121243 1.212895 1.630763

12 6 -0.415842 3.450872 0.026319

13 6 1.121243 -1.212895 1.630763

14 6 0.415842 -3.450872 0.026319

15 7 -1.710497 -1.574035 0.211843

16 7 1.094690 -1.196234 -1.558498

17 7 1.710497 1.574035 0.211843

18 7 -1.094690 1.196234 -1.558498

------

Table S28. Theoretical Cartesian coordinates (in Å) for the structure 4S-4using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.000000 0.000000 1.445904

2 75 0.000000 0.000000 -1.445904

3 8 2.561759 0.000000 2.986796

4 8 0.000000 3.112687 0.879847

5 8 -3.112687 0.000000 -0.879847

6 8 3.112687 0.000000 -0.879847

7 8 -2.561759 0.000000 2.986796

8 8 0.000000 -2.561759 -2.986796

9 8 0.000000 -3.112687 0.879847

10 8 0.000000 2.561759 -2.986796

11 6 0.000000 1.979698 1.073812

12 6 1.979698 0.000000 -1.073812

13 7 0.000000 1.607144 -2.301525

14 7 0.000000 -1.607144 -2.301525

15 7 -1.607144 0.000000 2.301525

16 7 1.607144 0.000000 2.301525

17 6 0.000000 -1.979698 1.073812

18 6 -1.979698 0.000000 -1.073812

------

Table S29. Theoretical Cartesian coordinates (in Å) for the structure 4S-5using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 8 -0.069639 -3.079122 2.530808

2 8 -2.976282 1.959375 0.000000

3 8 3.061292 -1.013407 0.000000

4 8 0.593075 4.560896 0.000000

5 8 1.153174 0.990591 2.785007

6 8 -0.069639 -3.079122 -2.530808

7 8 1.153174 0.990591 -2.785007

8 8 -3.203755 -1.090937 0.000000

9 75 -0.069520 -1.501845 0.000000

10 75 0.112381 1.476386 0.000000

11 7 -0.069639 -2.362835 1.600676

12 7 -0.069639 -2.362835 -1.600676

13 7 0.719988 1.178167 -1.708685

14 7 0.719988 1.178167 1.708685

15 6 -2.064425 -1.224231 0.000000

16 6 -1.841339 1.754829 0.000000

17 6 1.928635 -1.192084 0.000000

18 6 0.402017 3.425455 0.000000

------

Table S30. Theoretical Cartesian coordinates (in Å) for the structure 4S-6using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -1.409589 -1.026596 1.413713

2 6 -1.409589 -1.026596 -1.413713

3 6 1.404900 -0.960394 1.409084

4 6 1.404900 -0.960394 -1.409084

5 8 -2.212009 -0.874050 2.217546

6 8 -2.212009 -0.874050 -2.217546

7 8 2.198477 -0.770362 2.214493

8 8 2.817192 2.465842 0.000000

9 8 -1.437268 2.431552 2.445523

10 8 2.198477 -0.770362 -2.214493

11 8 -1.437268 2.431552 -2.445523

12 8 0.067199 -4.356919 0.000000

13 75 0.006033 -1.372472 0.000000

14 75 -0.005399 1.470961 0.000000

15 7 -0.880579 1.967004 1.510204

16 7 -0.880579 1.967004 -1.510204

17 7 1.741581 1.972389 0.000000

18 7 0.040481 -3.193312 0.000000

------

Table S31. Theoretical Cartesian coordinates (in Å) for the structure 4S-7using

the BP86/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 8 -0.170212 3.469646 2.333669

2 8 2.406941 -0.103979 1.108398

3 8 -2.406941 0.103979 1.108398

4 8 -2.232468 -2.879099 -1.546054

5 8 0.170212 -3.469646 2.333669

6 8 -2.253967 2.688437 -1.742259

7 8 2.253967 -2.688437 -1.742259

8 8 2.232468 2.879099 -1.546054

9 75 0.086648 1.464371 -0.023184

10 75 -0.086648 -1.464371 -0.023184

11 7 -1.393584 -2.321402 -0.959506

12 7 1.393584 2.321402 -0.959506

13 6 1.393584 -2.271752 -1.104843

14 6 0.098454 -2.725870 1.458287

15 6 -0.098454 2.725870 1.458287

16 6 -1.393584 2.271752 -1.104843

17 7 1.255258 -0.054972 0.729231

18 7 -1.255258 0.054972 0.729231

------

Table S32. Theoretical Cartesian coordinates (in Å) for the structure 4S-8using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.032269 1.432453 0.000000

2 75 -0.061496 -1.434421 0.000000

3 6 -0.079753 -1.335198 2.021127

4 6 1.896169 -1.127425 0.000000

5 8 -1.939174 3.851866 0.000000

6 8 -0.090096 -1.277307 -3.164539

7 8 -0.090096 -1.277307 3.164539

8 8 -2.710081 0.066356 0.000000

9 8 1.400919 2.096735 -2.582452

10 8 -0.791333 -4.337884 0.000000

11 8 1.400919 2.096735 2.582452

12 8 3.043615 -1.014204 0.000000

13 7 -1.503636 0.094317 0.000000

14 7 -0.562410 -3.188143 0.000000

15 6 -1.203250 2.968900 0.000000

16 6 -0.079753 -1.335198 -2.021127

17 7 0.832603 1.795570 -1.595064

18 7 0.832603 1.795570 1.595064

------

Table S33. Theoretical Cartesian coordinates (in Å) for the structure 4S-9using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.000000 1.461994 -0.078168

2 75 0.000000 -1.461994 -0.078168

3 6 -1.432832 -2.001961 1.202343

4 6 1.432832 2.001961 1.202343

5 6 -1.432832 2.001961 1.202343

6 6 1.432832 -2.001961 1.202343

7 8 0.000000 3.893068 -1.787029

8 8 2.330718 0.000000 -1.383449

9 8 -2.280030 -2.283044 1.926974

10 8 -2.330718 0.000000 -1.383449

11 8 2.280030 2.283044 1.926974

12 8 0.000000 -3.893068 -1.787029

13 8 -2.280030 2.283044 1.926974

14 8 2.280030 -2.283044 1.926974

15 7 1.226898 0.000000 -0.889240

16 7 -1.226898 0.000000 -0.889240

17 7 0.000000 2.937425 -1.115520

18 7 0.000000 -2.937425 -1.115520

------

Table S34. Theoretical Cartesian coordinates (in Å) for the structure 4S-10 using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -0.013772 1.292987 2.019989

2 6 -0.328966 3.328511 0.000000

3 6 -0.013772 1.292987 -2.019989

4 8 -0.083877 1.231022 3.159865

5 8 -0.496444 4.467193 0.000000

6 8 3.055450 0.954726 0.000000

7 8 -1.385439 -2.660068 2.384562

8 8 -1.385439 -2.660068 -2.384562

9 8 -0.083877 1.231022 -3.159865

10 8 2.783228 -2.580739 0.000000

11 8 -2.993558 0.562491 0.000000

12 75 0.070714 1.398170 0.000000

13 75 -0.006774 -1.520693 0.000000

14 7 -0.870395 -2.073560 -1.493894

15 7 1.727464 -2.043454 0.000000

16 7 1.909605 1.124490 0.000000

17 6 -1.868450 0.800043 0.000000

18 7 -0.870395 -2.073560 1.493894

------

Table S35. Theoretical Cartesian coordinates (in Å) for the structure4S-11

usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -1.496286 0.364834 0.000000

2 75 1.496286 -0.364834 0.000000

3 6 1.422501 0.914060 1.511684

4 6 -1.422501 -0.914060 1.511684

5 6 -1.422501 -0.914060 -1.511684

6 6 1.422501 0.914060 -1.511684

7 8 -0.536826 3.236496 0.000000

8 8 4.463357 -0.617864 0.000000

9 8 1.422501 1.604231 2.435133

10 8 -4.463357 0.617864 0.000000

11 8 -1.422501 -1.604231 2.435133

12 8 0.536826 -3.236496 0.000000

13 8 -1.422501 -1.604231 -2.435133

14 8 1.422501 1.604231 -2.435133

15 7 3.299239 -0.536599 0.000000

16 7 -3.299239 0.536599 0.000000

17 7 -0.853172 2.104402 0.000000

18 7 0.853172 -2.104402 0.000000

------

Table S36. Theoretical Cartesian coordinates (in Å) for the structure 3S-1using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.385215 0.050434 -0.064413

2 75 -1.332109 -0.090715 0.079901

3 7 2.612629 -0.796624 -1.103417

4 7 1.279343 1.880800 -0.219650

5 7 0.043111 -1.522967 0.101281

6 7 -2.709384 -0.587619 1.130838

7 6 -2.264162 -0.434491 -1.580426

8 6 2.300533 -0.137222 1.665935

9 6 -1.577636 1.893261 -0.002604

10 8 -3.580756 -0.896680 1.849367

11 8 0.162366 -2.724938 0.162043

12 8 -2.794838 -0.660946 -2.578522

13 8 -1.706148 3.036259 -0.024349

14 8 2.826532 -0.232175 2.683838

15 8 1.279675 3.039210 -0.393182

16 8 3.398759 -1.276147 -1.826998

------

Table S37. Theoretical Cartesian coordinates (in Å) for the structure 3S-2using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.332378 -0.102196 -0.053582

2 75 -1.393350 0.046103 -0.083514

3 6 -2.208065 -0.012375 1.704331

4 6 2.335322 -0.241915 1.603997

5 6 1.580440 1.873516 -0.241515

6 8 -0.167534 -2.727614 0.113002

7 8 -3.521499 -1.381141 -1.619444

8 8 -2.679557 -0.032578 2.752989

9 8 3.506939 -1.112929 -1.798866

10 8 2.905997 -0.351798 2.599777

11 8 -1.282708 3.004920 -0.613769

12 8 1.710595 3.006539 -0.393364

13 7 -2.690216 -0.857209 -0.983859

14 7 2.670799 -0.729690 -1.074829

15 7 -0.048672 -1.524074 0.074335

16 7 -1.282076 1.860754 -0.364403

------

Table S38. Theoretical Cartesian coordinates (in Å) for the structure 3S-3using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 2.576630 -0.387623 1.396781

2 6 2.576630 -0.387623 -1.396781

3 6 1.832662 1.846419 0.000000

4 8 3.338569 -0.665725 2.213456

5 8 3.338569 -0.665725 -2.213456

6 8 -0.236945 -0.077144 -2.727086

7 8 -3.082085 -2.662267 0.000000

8 8 2.104400 2.971627 0.000000

9 8 -3.584447 1.974469 0.000000

10 8 -0.236945 -0.077144 2.727086

11 75 1.260379 0.034703 0.000000

12 75 -1.467557 -0.148971 0.000000

13 7 -2.445372 -1.676804 0.000000

14 7 -2.724469 1.176466 0.000000

15 7 -0.236945 -0.052806 -1.521731

16 7 -0.236945 -0.052806 1.521731

------

Table S39. Theoretical Cartesian coordinates (in Å) for the structure 3S-4using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.654549 1.219727 0.000000

2 75 -0.509812 -1.315569 0.000000

3 8 -2.043477 -4.065135 0.000000

4 8 0.627544 -1.531975 2.778491

5 8 3.522766 2.433783 0.000000

6 8 -0.297707 2.644958 2.402372

7 8 -3.158524 0.350689 0.000000

8 8 -0.297707 2.644958 -2.402372

9 8 0.627544 -1.531975 -2.778491

10 7 0.165908 -1.430805 -1.703494

11 7 0.165908 -1.430805 1.703494

12 7 0.165908 1.956462 1.566319

13 7 0.165908 1.956462 -1.566319

14 6 -1.485460 -3.060101 0.000000

15 6 -2.182707 -0.264054 0.000000

16 6 2.444134 2.035244 0.000000

------

Table S40. Theoretical Cartesian coordinates (in Å) for the structure 3S-5using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.004049 1.389483 0.000000

2 75 -0.033764 -1.423419 0.000000

3 8 -1.431897 2.315136 2.412421

4 8 -1.237265 -1.217370 2.748979

5 8 -1.237265 -1.217370 -2.748979

6 8 2.156961 3.626271 0.000000

7 8 3.032022 -0.800931 0.000000

8 8 -1.431897 2.315136 -2.412421

9 8 0.457262 -4.529215 0.000000

10 6 1.324381 2.832388 0.000000

11 6 1.897486 -1.022226 0.000000

12 6 0.282867 -3.392556 0.000000

13 7 -0.738823 -1.297070 1.690740

14 7 -0.738823 -1.297070 -1.690740

15 7 -0.736593 1.876090 -1.569153

16 7 -0.736593 1.876090 1.569153

------

Table S41. Theoretical Cartesian coordinates (in Å) for the structure 3S-6using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 0.006612 0.809563 1.961591

2 6 -1.566858 2.308449 0.000000

3 6 0.006612 0.809563 -1.961591

4 8 -0.017168 0.660008 3.103114

5 8 -2.564421 2.882226 0.000000

6 8 -1.267333 -2.269746 -2.598395

7 8 -1.267333 -2.269746 2.598395

8 8 -0.017168 0.660008 -3.103114

9 8 2.842160 -2.262691 0.000000

10 8 1.954948 3.578901 0.000000

11 75 0.075014 1.274106 0.000000

12 75 -0.030596 -1.418838 0.000000

13 7 -0.811152 -1.868188 1.588528

14 7 1.715014 -1.932928 0.000000

15 7 -0.811152 -1.868188 -1.588528

16 7 1.147434 2.734699 0.000000

------

Table S42. Theoretical Cartesian coordinates (in Å) for the structure 3S-7using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.099290 -1.431266 0.000000

2 75 -0.029462 1.377967 0.000000

3 8 2.990207 -2.199371 0.000000

4 8 -0.186603 -0.871666 3.097407

5 8 1.942826 3.795976 0.000000

6 8 -2.043290 -3.534290 0.000000

7 8 -1.540901 2.174090 -2.407434

8 8 -0.186603 -0.871666 -3.097407

9 8 -1.540901 2.174090 2.407434

10 6 -0.075576 -1.038498 1.964344

11 6 1.181979 2.933045 0.000000

12 7 -0.812981 1.792069 1.562484

13 7 -0.812981 1.792069 -1.562484

14 7 -1.237826 -2.681097 0.000000

15 7 1.878087 -1.828206 0.000000

16 6 -0.075576 -1.038498 -1.964344

------

Table S43. Theoretical Cartesian coordinates (in Å) for the structure 3S-8using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -0.146187 1.522559 2.010125

2 6 0.981066 3.017943 0.000000

3 6 -0.146187 1.522559 -2.010125

4 8 -0.210468 1.643710 3.148731

5 8 1.650509 3.964409 0.000000

6 8 2.535459 0.036745 0.000000

7 8 0.110536 -3.307225 2.336918

8 8 -0.210468 1.643710 -3.148731

9 8 0.110536 -3.307225 -2.336918

10 8 -2.766232 0.019572 0.000000

11 75 -0.057384 1.410174 0.000000

12 75 -0.118955 -1.464453 0.000000

13 7 0.110536 -2.515798 1.463848

14 7 0.110536 -2.515798 -1.463848

15 7 1.337777 0.057769 0.000000

16 7 -1.653954 -0.434319 0.000000

------

Table S44. Theoretical Cartesian coordinates (in Å) for the structure 3T-1using

the MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -2.640597 1.423709 -0.000288

2 6 -2.236676 -0.931815 -1.364408

3 6 -2.236563 -0.931196 1.364858

4 8 -3.453592 2.236266 -0.000443

5 8 -2.771877 -1.478461 -2.229317

6 8 0.416854 -2.609199 0.000280

7 8 3.273764 -0.187606 -2.422272

8 8 -2.771683 -1.477456 2.230065

9 8 3.273677 -0.186932 2.422384

10 8 0.216900 2.765932 -0.000388

11 75 -1.255790 0.020911 0.000000

12 75 1.500924 0.111006 0.000000

13 7 2.541753 -0.048467 -1.504484

14 7 2.541692 -0.048053 1.504536

15 7 0.304504 -1.417578 0.000149

16 7 0.158573 1.548620 -0.000221

------

Table S45. Theoretical Cartesian coordinates (in Å) for the structure 3T-2using

the BP86/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 2.273497 1.265830 1.375488

2 6 2.273497 1.265830 -1.375488

3 6 0.300045 2.628404 0.000000

4 8 3.072790 1.489371 2.172220

5 8 3.072790 1.489371 -2.172220

6 8 -0.098676 -0.359063 -2.678530

7 8 -0.813438 -4.049878 0.000000

8 8 -0.162071 3.688103 0.000000

9 8 -3.998984 -0.257100 0.000000

10 8 -0.098676 -0.359063 2.678530

11 75 0.936393 0.823328 0.000000

12 75 -1.061261 -1.050700 0.000000

13 7 -0.881436 -2.868918 0.000000

14 7 -2.850779 -0.549325 0.000000

15 7 -0.098676 -0.222402 -1.480376

16 7 -0.098676 -0.222402 1.480376

------

Table S46. Theoretical Cartesian coordinates (in Å) for the structure 3T-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 0.743240 1.672297 0.157398

2 6 -1.951395 0.158650 1.745159

3 6 -2.805969 -1.205863 -0.559553

4 8 0.626170 2.825389 0.270304

5 8 -2.294918 0.279333 2.837650

6 8 0.260167 -2.682584 -0.301802

7 8 3.166530 -0.215569 2.461321

8 8 -3.671869 -1.897249 -0.864910

9 8 3.246041 0.174026 -2.442181

10 8 -2.430832 2.514237 -1.189948

11 75 -1.310498 -0.025528 -0.076953

12 75 1.471381 -0.113679 -0.025873

13 7 2.478813 -0.211713 1.500951

14 7 2.521664 -0.006229 -1.525803

15 7 -0.014254 -1.496591 -0.184327

16 7 -2.013629 1.530160 -0.720752

------

Table S47. Theoretical Cartesian coordinates (in Å) for the structure 3T-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -1.401565 0.184576 -0.023817

2 75 1.330625 -0.017504 -0.005687

3 6 2.912452 1.155709 0.255967

4 6 -2.166417 -0.715054 1.505996

5 6 -1.051443 -1.511121 -0.895677

6 8 0.138804 2.807577 0.288506

7 8 2.196050 -1.288413 -2.578603

8 8 3.817169 1.840198 0.425045

9 8 -4.032371 1.018817 -1.141090

10 8 -2.576971 -1.208838 2.464988

11 8 1.871572 -1.905852 2.248382

12 8 -0.957648 -2.508721 -1.477775

13 7 1.835028 -0.697670 -1.625754

14 7 -3.010128 0.759934 -0.626365

15 7 0.037202 1.598910 0.151811

16 7 1.637912 -1.110572 1.411658

------

Table S48. Theoretical Cartesian coordinates (in Å) for the structure 3T-5 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.223706 -1.542163 0.000000

2 75 -0.084834 1.292777 0.000000

3 8 0.091013 4.423952 0.000000

4 8 -1.375371 1.044429 2.698460

5 8 -2.773927 -2.078756 0.000000

6 8 0.723295 -1.966111 2.963420

7 8 3.043908 1.002639 0.000000

8 8 0.723295 -1.966111 -2.963420

9 8 -1.375371 1.044429 -2.698460

10 7 -0.831253 1.144054 -1.665557

11 7 -0.831253 1.144054 1.665557

12 7 0.502086 -1.746725 1.822958

13 7 0.502086 -1.746725 -1.822958

14 6 0.023576 3.275824 0.000000

15 6 1.897602 1.122864 0.000000

16 6 -1.631466 -1.881092 0.000000

------

Table S49. Theoretical Cartesian coordinates (in Å) for the structure 3T-6 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.415802 -1.308851 -0.075266

2 75 -0.415802 1.308851 -0.075266

3 8 -0.276085 -3.667798 1.810511

4 8 -3.350839 1.832508 -0.193980

5 8 0.000000 0.000000 2.765039

6 8 3.350839 -1.832508 -0.193980

7 8 0.276085 3.667798 1.810511

8 8 -1.388261 -2.057015 -2.380129

9 8 1.388261 2.057015 -2.380129

10 6 0.000000 -2.796635 1.111535

11 6 0.000000 0.000000 1.588782

12 6 0.000000 2.796635 1.111535

13 7 -2.204450 1.613137 -0.052827

14 7 0.703808 1.725104 -1.481740

15 7 -0.703808 -1.725104 -1.481740

16 7 2.204450 -1.613137 -0.052827

------

Table S50. Theoretical Cartesian coordinates (in Å) for the structure 3T-7 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.136931 -1.529553 0.000000

2 75 0.081044 1.348766 0.000000

3 7 -0.157675 -2.258272 1.676689

4 7 -0.157675 -2.258272 -1.676689

5 7 0.688132 1.674167 -1.699542

6 7 0.688132 1.674167 1.699542

7 6 -1.103793 2.886851 0.000000

8 6 -1.573554 0.061797 0.000000

9 6 1.720190 -0.991886 0.000000

10 8 1.178562 1.949244 2.732287

11 8 1.178562 1.949244 -2.732287

12 8 -1.831172 3.777890 0.000000

13 8 2.857092 -0.774527 0.000000

14 8 -2.754192 0.044891 0.000000

15 8 -0.157675 -2.848629 -2.698184

16 8 -0.157675 -2.848629 2.698184

------

Table S51. Theoretical Cartesian coordinates (in Å) for the structure 3T-8 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.470868 0.080576 -0.138027

2 75 -1.470193 -0.163839 -0.082070

3 8 1.512506 3.105115 -0.209757

4 8 1.561099 -0.589370 2.874138

5 8 -1.254503 2.603584 1.290457

6 8 4.013304 -1.342086 -0.777265

7 8 -3.194313 0.705562 -2.373758

8 8 0.040563 -2.396339 -1.412501

9 8 -2.793926 -1.590759 2.184627

10 6 1.507437 -0.360123 1.746001

11 6 -1.286511 1.569768 0.781466

12 7 -2.182312 -1.042800 1.337893

13 7 -2.428886 0.377915 -1.537732

14 7 2.997531 -0.811432 -0.534597

15 7 1.428397 1.934716 -0.153706

16 6 0.140484 -1.364607 -0.841340

------

Table S52. Theoretical Cartesian coordinates (in Å) for the structure 2S-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.183721 1.352747 -0.057193

2 75 0.183721 -1.352747 -0.057193

3 6 0.081990 -2.442496 1.552931

4 6 -0.081990 2.442496 1.552931

5 8 0.183721 3.619947 -1.943379

6 8 2.624282 0.464329 -0.152578

7 8 -0.028530 -3.053052 2.525220

8 8 -2.624282 -0.464329 -0.152578

9 8 -0.183721 -3.619947 -1.943379

10 8 0.028530 3.053052 2.525220

11 7 1.429242 0.343195 -0.045899

12 7 -1.429242 -0.343195 -0.045899

13 7 0.051560 2.750881 -1.162983

14 7 -0.051560 -2.750881 -1.162983

------

Table S53. Theoretical Cartesian coordinates (in Å) for the structure 2S-2 usingthe MPW1PW91/SDDmethod

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.120057 0.159449 -1.357439

2 75 -0.120057 -0.159449 1.357439

3 6 1.484194 -0.095804 2.436902

4 6 -1.484194 0.095804 -2.436902

5 8 1.946132 -0.264249 -3.668494

6 8 -0.266360 2.623579 0.408088

7 8 2.460545 0.004752 3.044597

8 8 0.266360 -2.623579 -0.408088

9 8 -1.946132 0.264249 3.668494

10 8 -2.460545 -0.004752 -3.044597

11 7 -0.102517 1.432604 0.316158

12 7 0.102517 -1.432604 -0.316158

13 7 1.207919 -0.133485 -2.763737

14 7 -1.207919 0.133485 2.763737

------

Table S54. Theoretical Cartesian coordinates (in Å) for the structure 2S-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.381330 -0.074699 -0.183531

2 75 -1.362248 0.048731 -0.179461

3 6 -2.478296 -1.387670 0.413360

4 6 2.476809 1.529066 0.096820

5 8 3.581923 -1.851756 0.734834

6 8 0.079719 0.065724 2.490765

7 8 -3.095039 -2.290934 0.787143

8 8 -0.881785 -0.366336 -2.340491

9 8 -3.274987 2.095409 0.742811

10 8 3.090652 2.496376 0.215475

11 7 0.087336 0.070858 1.291699

12 7 0.144910 -0.173124 -1.615144

13 7 2.716437 -1.132643 0.395643

14 7 -2.580980 1.222243 0.373370

------

Table S55. Theoretical Cartesian coordinates (in Å) for the structure 2S-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -0.239513 -2.626653 1.350914

2 6 -0.239513 -2.626653 -1.350914

3 8 -0.535394 -3.332919 2.217678

4 8 -2.538070 -0.399536 0.000000

5 8 -0.302282 3.212723 2.315971

6 8 -0.535394 -3.332919 -2.217678

7 8 -0.302282 3.212723 -2.315971

8 8 2.756451 0.057521 0.000000

9 75 0.244120 -1.325394 0.000000

10 75 -0.025241 1.342270 0.000000

11 7 -0.242203 2.495095 1.391464

12 7 -0.242203 2.495095 -1.391464

13 7 -1.341917 -0.263819 0.000000

14 7 1.556890 0.261254 0.000000

------

Table S56. Theoretical Cartesian coordinates (in Å) for the structure 2S-5usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.106124 1.331084 -0.063848

2 75 0.106124 -1.331084 -0.063848

3 8 1.566487 -3.728902 -1.502985

4 8 -2.710594 -1.834604 -0.784386

5 8 -1.566487 3.728902 -1.502985

6 8 2.710594 1.834604 -0.784386

7 8 -0.460907 2.119916 2.758247

8 8 0.460907 -2.119916 2.758247

9 7 0.489280 -1.763196 1.636300

10 7 -1.566487 -1.566043 -0.672536

11 7 1.566487 1.566043 -0.672536

12 7 -0.489280 1.763196 1.636300

13 6 1.008636 -2.887429 -0.954127

14 6 -1.008636 2.887429 -0.954127

------

Table S57. Theoretical Cartesian coordinates (in Å) for the structure 2S-6usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.022752 1.310990 0.000000

2 75 -0.022752 -1.310990 0.000000

3 8 -0.019253 3.134390 2.366364

4 8 2.837490 -0.137731 0.000000

5 8 -0.019253 3.134390 -2.366364

6 8 0.019253 -3.134390 -2.366364

7 8 -2.837490 0.137731 0.000000

8 8 0.019253 -3.134390 2.366364

9 7 -0.019253 -2.460896 1.410287

10 7 -0.019253 -2.460896 -1.410287

11 7 0.019253 2.460896 -1.410287

12 7 0.019253 2.460896 1.410287

13 6 -1.673977 0.282295 0.000000

14 6 1.673977 -0.282295 0.000000

------

Table S58. Theoretical Cartesian coordinates (in Å) for the structure 2S-7usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.701616 -1.272686 0.000000

2 75 -0.701616 1.272686 0.000000

3 6 1.195490 1.003355 0.000000

4 6 -1.195490 -1.003355 0.000000

5 8 0.838658 -2.866466 2.515029

6 8 -0.838658 2.866466 2.515029

7 8 0.838658 -2.866466 -2.515029

8 8 2.376824 1.020443 0.000000

9 8 -0.838658 2.866466 -2.515029

10 8 -2.376824 -1.020443 0.000000

11 7 -0.838658 2.145721 1.584835

12 7 0.838658 -2.145721 -1.584835

13 7 0.838658 -2.145721 1.584835

14 7 -0.838658 2.145721 -1.584835

------

Table S59. Theoretical Cartesian coordinates (in Å) for the structure 2T-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.059875 0.129014 1.337581

2 75 -0.059875 0.129014 -1.337581

3 6 1.561551 -0.296209 -2.329476

4 6 1.561551 -0.296209 2.329476

5 8 -2.053364 -0.482225 3.500490

6 8 0.140634 2.818570 0.000000

7 8 2.555294 -0.549923 -2.857786

8 8 -0.199470 -2.513851 0.000000

9 8 -2.053364 -0.482225 -3.500490

10 8 2.555294 -0.549923 2.857786

11 7 0.067979 1.603082 0.000000

12 7 -0.088749 -1.314617 0.000000

13 7 -1.226586 -0.267157 2.689942

14 7 -1.226586 -0.267157 -2.689942

------

Table S60. Theoretical Cartesian coordinates (in Å) for the structure 2T-2 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.261707 -0.246873 -1.288339

2 75 0.261707 0.246873 1.288339

3 6 1.868898 -0.139751 2.374536

4 6 -1.868898 0.139751 -2.374536

5 8 1.683661 -0.442732 -3.530854

6 8 -0.292243 2.625921 -0.430285

7 8 2.839068 -0.351668 2.957250

8 8 0.292243 -2.625921 0.430285

9 8 -1.683661 0.442732 3.530854

10 8 -2.839068 0.351668 -2.957250

11 7 -0.158046 1.425620 -0.313705

12 7 0.158046 -1.425620 0.313705

13 7 0.851266 -0.448188 -2.698189

14 7 -0.851266 0.448188 2.698189

------

Table S61. Theoretical Cartesian coordinates (in Å) for the structure 2T-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.269222 -1.480329 0.000000

2 75 0.416197 1.070213 0.000000

3 8 3.202806 2.451536 0.000000

4 8 -0.580916 2.420683 2.441036

5 8 -3.180213 -0.537435 0.000000

6 8 0.022562 -1.936659 2.989675

7 8 0.022562 -1.936659 -2.989675

8 8 -0.580916 2.420683 -2.441036

9 7 -0.096126 1.777634 -1.577502

10 7 -0.096126 1.777634 1.577502

11 7 -0.096126 -1.714041 1.836365

12 7 -0.096126 -1.714041 -1.836365

13 6 2.141684 2.003023 0.000000

14 6 -2.071469 -0.867832 0.000000

------

Table S62. Theoretical Cartesian coordinates (in Å) for the structure 2T-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 0.412975 2.556997 1.375304

2 6 0.412975 2.556997 -1.375304

3 8 0.776861 3.216746 2.251174

4 8 2.477083 0.136729 0.000000

5 8 0.412975 -2.999939 2.490941

6 8 0.776861 3.216746 -2.251174

7 8 0.412975 -2.999939 -2.490941

8 8 -2.816394 -0.039101 0.000000

9 75 -0.208847 1.333396 0.000000

10 75 -0.086679 -1.360751 0.000000

11 7 0.225243 -2.343318 1.522677

12 7 0.225243 -2.343318 -1.522677

13 7 1.274810 0.124989 0.000000

14 7 -1.598739 -0.135819 0.000000

------

Table S63. Theoretical Cartesian coordinates (in Å) for the structure 2T-5 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.013013 1.366551 0.000000

2 75 -0.186310 -1.418814 0.000000

3 6 -1.758940 -0.299920 0.000000

4 6 1.424791 -0.028238 0.000000

5 8 0.916137 3.040955 2.269683

6 8 -0.084408 -2.764926 2.699112

7 8 0.916137 3.040955 -2.269683

8 8 -2.834589 0.174246 0.000000

9 8 -0.084408 -2.764926 -2.699112

10 8 2.591345 -0.225994 0.000000

11 7 -0.084408 -2.230817 1.649549

12 7 0.483861 2.365544 -1.408988

13 7 0.483861 2.365544 1.408988

14 7 -0.084408 -2.230817 -1.649549

------

Table S64. Theoretical Cartesian coordinates (in Å) for the structure 1S-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.050837 -0.029734 -0.019040

2 75 -1.507481 0.152421 0.440528

3 8 2.098315 -0.980366 2.574350

4 8 1.640626 -2.093214 -2.053794

5 8 -1.709820 2.327084 -1.503225

6 8 3.403870 1.908133 -0.750607

7 8 -2.490627 -2.032285 -1.231469

8 7 -2.097456 -1.282598 -0.402207

9 7 -1.553642 1.614306 -0.566713

10 7 1.332032 -1.182168 -1.375807

11 7 1.631794 -0.451423 1.628845

12 6 2.586721 1.146137 -0.480417

------

Table S65. Theoretical Cartesian coordinates (in Å) for the structure 1S-2 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.047535 -1.549097 0.000000

2 75 -0.160065 1.044805 0.000000

3 6 -1.720673 2.188056 0.000000

4 8 2.818814 -2.078830 0.000000

5 8 -0.196403 -0.497731 2.674937

6 8 -2.688870 2.819785 0.000000

7 8 -0.196403 -0.497731 -2.674937

8 8 1.627205 3.434372 0.000000

9 7 -0.196403 -0.253364 1.488148

10 7 -0.196403 -0.253364 -1.488148

11 7 1.638703 -2.109254 0.000000

12 7 0.894004 2.509504 0.000000

------

Table S66. Theoretical Cartesian coordinates (in Å) for the structure 1S-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.759646 -1.345045 0.000000

2 75 0.755193 0.742843 0.000000

3 6 0.057523 2.564267 0.000000

4 8 -3.411860 -0.146122 0.000000

5 8 0.078292 -0.696630 2.659225

6 8 -0.407324 3.621143 0.000000

7 8 0.078292 -0.696630 -2.659225

8 8 3.552944 1.753773 0.000000

9 7 0.078292 -0.338464 1.499816

10 7 0.078292 -0.338464 -1.499816

11 7 -2.461540 -0.847571 0.000000

12 7 2.428681 1.395250 0.000000

------

Table S67. Theoretical Cartesian coordinates (in Å) for the structure 1S-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.086585 1.092600 0.000000

2 75 -0.318795 -1.356140 0.000000

3 8 0.869604 2.741404 2.369481

4 8 0.869604 2.741404 -2.369481

5 8 1.394996 -2.250253 -2.219911

6 8 -2.995419 0.687636 0.000000

7 8 1.394996 -2.250253 2.219911

8 7 0.574954 -1.977728 1.421744

9 7 0.574954 -1.977728 -1.421744

10 7 0.574954 2.153922 -1.398154

11 7 0.574954 2.153922 1.398154

12 6 -1.825528 0.656552 0.000000

------

Table S68. Theoretical Cartesian coordinates (in Å) for the structure 1S-5 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 2.029841 1.427959 -0.561802

2 8 2.383684 2.331338 -1.195538

3 8 -2.464201 -2.483549 -1.076453

4 8 -2.344686 2.331017 -1.499756

5 8 -1.092767 0.280048 2.979279

6 8 2.595830 -1.948541 -1.483079

7 75 1.330902 -0.067189 0.362420

8 75 -1.151373 0.003407 -0.024648

9 7 -1.851096 1.414757 -0.950759

10 7 -0.988889 0.160140 1.802691

11 7 -1.935497 -1.504234 -0.698088

12 7 2.165966 -1.194461 -0.690650

------

Table S69. Theoretical Cartesian coordinates (in Å) for the structure 1S-6usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 2.369466 -1.629421 0.000000

2 8 3.526274 -1.519695 0.000000

3 8 -0.121436 -0.559774 2.661873

4 8 0.999990 3.524833 0.000000

5 8 -3.350024 1.956085 0.000000

6 8 -0.121436 -0.559774 -2.661873

7 75 0.450159 -1.451429 0.000000

8 75 -0.543516 0.958080 0.000000

9 7 0.364370 2.538420 0.000000

10 7 -2.218927 1.647134 0.000000

11 7 -0.121436 -0.375325 1.459267

12 7 -0.121436 -0.375325 -1.459267

------

Table S70. Theoretical Cartesian coordinates (in Å) for the structure 1S-7 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 -1.695689 1.775371 0.000000

2 8 -1.245031 -1.368978 2.763144

3 8 -1.245031 -1.368978 -2.763144

4 8 -1.835854 2.919232 0.000000

5 8 3.219008 -2.002551 0.000000

6 8 2.737167 2.557533 0.000000

7 75 1.120120 0.082139 0.000000

8 75 -1.359689 -0.182764 0.000000

9 7 2.174352 1.528311 0.000000

10 7 2.472815 -1.097670 0.000000

11 7 -1.245031 -0.857847 1.704215

12 7 -1.245031 -0.857847 -1.704215

------

Table S71. Theoretical Cartesian coordinates (in Å) for the structure 1T-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.153922 -0.033626 -0.290544

2 75 -1.304025 -0.200901 0.466988

3 6 1.837993 0.527447 1.391658

4 8 1.366107 2.617776 -1.795320

5 8 -2.131289 2.579106 0.105022

6 8 1.845749 -2.954325 -0.002436

7 8 -2.490494 -1.447612 -1.908358

8 8 2.246740 0.872247 2.419046

9 7 -1.704190 1.519587 0.429535

10 7 1.507533 -1.823932 -0.070015

11 7 1.209874 1.612386 -1.194505

12 7 -1.936744 -1.152706 -0.897424

------

Table S72. Theoretical Cartesian coordinates (in Å) for the structure 1T-2 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.419024 -1.252457 0.000000

2 75 0.149345 1.163758 0.000000

3 6 -1.798513 1.214840 0.000000

4 8 -2.943251 1.426550 0.000000

5 8 1.178221 1.942334 2.730963

6 8 1.178221 1.942334 -2.730963

7 8 1.178221 -2.384879 2.199452

8 8 1.178221 -2.384879 -2.199452

9 7 0.415660 -1.948880 1.410438

10 7 0.415660 -1.948880 -1.410438

11 7 0.788619 1.594003 -1.670730

12 7 0.788619 1.594003 1.670730

------

Table S73. Theoretical Cartesian coordinates (in Å) for the structure 1T-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -1.469750 -0.267831 0.280850

2 75 1.100728 0.026699 -0.204388

3 6 2.473652 -0.956415 0.710343

4 8 -3.381920 1.558638 -1.083948

5 8 -0.357706 -2.218938 -1.658507

6 8 3.240484 -1.561401 1.331303

7 8 -0.080348 1.616216 2.045581

8 8 2.956070 2.180214 -1.168091

9 7 -0.327088 -1.321693 -0.832918

10 7 -0.103151 0.763176 1.181327

11 7 -2.710597 0.816776 -0.446062

12 7 2.258275 1.345390 -0.720557

------

Table S74. Theoretical Cartesian coordinates (in Å) for the structure 1T-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -1.453113 -0.270098 0.314618

2 75 1.112033 -0.051062 -0.167484

3 6 1.978712 1.548147 -0.901291

4 8 -3.325831 1.519789 -1.145543

5 8 -0.088152 1.678979 2.015306

6 8 2.439182 2.492062 -1.378016

7 8 -0.443345 -2.235862 -1.643390

8 8 3.545529 -1.182805 1.099952

9 7 -0.091124 0.793943 1.184376

10 7 -0.339644 -1.343045 -0.819715

11 7 -2.679210 0.775448 -0.485702

12 7 2.637072 -0.709082 0.519067

------

Table S75. Theoretical Cartesian coordinates (in Å) for the structure 1T-5 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 6 2.577258 -0.775562 0.000000

2 8 3.418588 -1.575949 0.000000

3 8 -1.255096 -1.933829 2.610141

4 8 -1.255096 -1.933829 -2.610141

5 8 -2.280126 2.431299 0.000000

6 8 2.968540 2.809143 0.000000

7 75 1.157471 0.469415 0.000000

8 75 -1.342598 -0.428695 0.000000

9 7 -1.255096 -1.347362 -1.590705

10 7 -1.860984 1.329902 0.000000

11 7 -1.255096 -1.347362 1.590705

12 7 2.320676 1.825497 0.000000

------

Table S76. Theoretical Cartesian coordinates (in Å) for the structure 0S-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.036456 1.272325 -0.189178

2 75 -0.036456 -1.272325 -0.189178

3 7 -1.519354 1.384425 -1.047636

4 7 1.519354 -1.384425 -1.047636

5 7 -0.036456 1.690030 1.528345

6 8 0.404497 -2.001480 2.611075

7 7 0.036456 -1.690030 1.528345

8 8 -2.676171 1.556412 -1.258155

9 8 2.676171 -1.556412 -1.258155

10 8 -0.404497 2.001480 2.611075

------

Table S77. Theoretical Cartesian coordinates (in Å) for the structure 0S-2 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.000000 1.268897 -0.313664

2 75 0.000000 -1.268897 -0.313664

3 7 1.488269 0.000000 -0.483191

4 7 0.000000 2.012536 1.294647

5 7 -1.488269 0.000000 -0.483191

6 7 0.000000 -2.012536 1.294647

7 8 0.000000 -2.279916 2.448697

8 8 2.675707 0.000000 -0.218123

9 8 0.000000 2.279916 2.448697

10 8 -2.675707 0.000000 -0.218123

------

Table S78. Theoretical Cartesian coordinates (in Å) for the structure 0T-1 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -1.290946 0.310698 0.000000

2 75 1.156782 -0.291820 0.000000

3 7 -1.296428 1.246999 1.516606

4 7 1.531249 -1.314581 1.406212

5 7 -1.296428 1.246999 -1.516606

6 8 1.719854 -2.163855 -2.211111

7 7 1.531249 -1.314581 -1.406212

8 8 -1.296428 2.134501 2.304417

9 8 1.719854 -2.163855 2.211111

10 8 -1.296428 2.134501 -2.304417

------

Table S79. Theoretical Cartesian coordinates (in Å) for the structure 0T-2 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 0.181564 -0.443767 -1.375163

2 75 -0.181564 0.443767 1.375163

3 7 1.338953 0.356790 0.279171

4 7 -0.439401 -1.098314 -2.914104

5 7 -1.338953 -0.356790 -0.279171

6 7 0.439401 1.098314 2.914104

7 8 0.778429 1.526722 3.961175

8 8 2.531649 0.618397 0.367496

9 8 -0.778429 -1.526722 -3.961175

10 8 -2.531649 -0.618397 -0.367496

------

Table S80. Theoretical Cartesian coordinates (in Å) for the structure 0T-3 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 -0.014721 0.308726 1.324629

2 75 -0.014721 0.308726 -1.324629

3 7 1.406213 0.162737 0.000000

4 7 0.105000 -1.149980 2.349870

5 7 -1.448273 0.358306 0.000000

6 7 0.105000 -1.149980 -2.349870

7 8 0.105000 -2.258203 -2.762808

8 8 2.585329 -0.143370 0.000000

9 8 0.105000 -2.258203 2.762808

10 8 -2.666256 0.427716 0.000000

------

Table S81. Theoretical Cartesian coordinates (in Å) for the structure 0T-4 usingthe MPW1PW91/SDD method

Standard orientation:

------

Center Atomic Coordinates (Angstroms)

Number Number X Y Z

------

1 75 1.447799 -0.153794 0.000000

2 75 -1.447799 0.153794 0.000000

3 7 -0.057685 1.413519 0.000000

4 7 2.927685 -1.149753 0.000000

5 7 0.057685 -1.413519 0.000000

6 7 -2.927685 1.149753 0.000000

7 8 -3.948768 1.743285 0.000000

8 8 0.057685 2.632183 0.000000

9 8 3.948768 -1.743285 0.000000

10 8 -0.057685 -2.632183 0.000000

------

Complete Gaussian 03 reference (Reference 37)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT, 2004.

1