ISSN 0352-5139
J. Serb. Chem. Soc. Vol. 69, No. 4(2004)
CONTENTS
Organic Chemistry
R. Markovi}, M. Baranac and Z. D`ambaski: Facile rearrangement of push-pull 5-substituted 4-oxothiazolidines induced by pyridinium hydrobromide perbromide under homogeneous reaction conditions
239
M. Kidwai and A. D. Mishra: An expeditious synthesis of 3,4-dihydro-benzo[2,3-d]pyrimidines using inorganic solid supports
247
Inorganic Chemistry
M. G. Abd El Wahed, S. Abd El Wanees, M. El Gamel and S. Abd El Haleem: Physico-chemical studies of some aminobenzoic acid hydrazide complexes
255
Physical Chemistry
I. Gutman, B. Furtula, B. Arsi} and @. Bo{kovi}: On the relation between Zenkevich and Wiener indices of alkanes
265
A. Radosavljevi}-Mihajlovi}, V. Dondur, A. Dakovi}, J. Lemi} and M. Toma{evi}-^anovi}: Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid
273
B. M. Sargar, M. M. Rajmane and M. A. Anuse: Selective liquid-liquid extraction of antimony(III) from hydrochloric acid media by N-n-octylaniline in xylene
283
M. G. Antov, D. M. Peri~in and S. N. Pejin: Pectinases partitioning in aqueous two-phase systems: an integration of the systems poly(ethylene glycol)crude dextran and poly(ethylene glycol)ammonium sulphate
299
Analytical Chemistry
V. Vasi}, J. Savi} and N. Vukeli}: Sorption-spectrophotometric method for the determination of Pd(II) in aqueous solutions
309
J.Serb.Chem.Soc. 69(4)239–245(2004)
UDC 547.789+547.82
JSCS – 3149
Original scientific paper
Facile rearrangement of push-pull 5-substituted 4-oxothiazolidines induced by pyridinium hydrobromide perbromide under homogeneous reaction conditions
RADE MARKOVI]a,b, MARIJA BARANACa,b# and ZDRAVKO D@AMBASKIb#
aFaculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 158, 11000 Belgrade
(e-mail: ) and bCenter for Chemistry ICTM, P.O.Box 473, 11000 Belgrade, Serbia and Montenegro
(Received 3 October 2003)
Abstract: Pyridinium hydrobromide perbromide (PHBP) is a highly efficient reagent for the conversion of 5-substituted-2-alkylidene-4-oxothiazolidine derivatives to the corresponding thiazolidines with two fully delocalized exocyclic double bonds at the C(2) and C(5) positions. This conversion as a two-step bromination-rearrangement process occurs in acetonitrile under homogeneous reaction conditions.
Keywords: thiazolidine, rearrangement, pyridinium hydrobromide perbromide, acetonitrile.
REFERENCES AND NOTES
1. Z.-H. Xu, Y.-F. Jie, M.-X. Wang, Z.-T. Huang, Synthesis (2002) 523
2. P. Brunerie, J. P. Célérier, M. Huché, G. Lhommet, Synthesis (1985) 735
3. P. Nemes, B. Balázs, G. Tóth, P. Scheiber, Synlett (2000) 1327
4. R. C. F. Jones, P. Patel, S. C. Hirst, I. Turner, Tetrahedron 53 (1997) 11781
5. A. S. Howard, G. C. Gerrans, J. P. Michael, J. Org. Chem. 45 (1980) 1713
6. L. Calvo, A. González-Ortega, M. C. SaZudo, Synthesis (2002) 2450
7. R. Markovi}, M. Baranac, Heterocycles 48 (1998) 893
8. R. Markovi}, M. Baranac, Z. D`ambaski, M. Stojanovi}, P. J. Steel, Tetrahedron 59 (2003) 7803
9. R. Markovi}, A. Shirazi, M. Baranac, Z. D`ambaski, D. Mini}, J. Phys. Org. Chem. 17 (2004) 118
10. R. Markovi}, M. Baranac, Synlett (2000) 607
11. R. Markovi}, Z. D`ambaski, M. Baranac, Tetrahedron 57 (2001) 5833
12. I. Kuwajima, E. Nakamura, in Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, C. H. Heathcock, Eds.; Pergamon: Oxford, 1991; vol II, pp. 441–473
13. E. Negishi, J. Organomet. Chem. 576 (1999) 179
14. A. Bachki, F. Foubelo, M. Yus, Tetrahedron 53 (1997) 4921
15. C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, Tetrahedon Lett. 33 (1992) 919
16. W. G. Dauben, A. M. Warshawsky, Synth. Commun. 18 (1988) 1323
17. J. Das, J. A. Reid, D. R. Kronenthal, J. Singh, P. D. Pansegrau, R. H. Mueller, Tetrahedron Lett. 33 (1992) 7835
18. M. Yamada, K. Nakao, T. Fukui, K. Nunami, Tetrahedron 52 (1996) 5751
19. R. Danion-Bougot, D. Danion, G. Francis, Tetrahedron Lett. 31 (1990) 3739
20. R. W. Armstrong, J. E. Tellew, E. J. Moran, J. Org. Chem. 57 (1992) 2208
21. R. S. Coleman, A. J. Carpenter, J. Org. Chem. 58 (1993) 4452
22. B. H. Bakker, Y. L. Chow, Can. J. Chem. 60 (1982) 2268
23. C. P. Kordik, A. B. Reitz, J. Org. Chem. 61 (1996) 5644
24. S. P. Singh, S. S. Parmar, K. Raman, V. I. Stenberg, Chem. Rev. 81 (1981) 175
25. J-M. Lehn, Angew. Chem. Int. Ed. Engl. 29 (1990) 1304 and references therein
26. N. G. Ramesh, E. H. Heijne, A. J. H. Klunder, B. Zwanenburg, Tetrahedron 58 (2002) 1368
27. G. V. Ramanarayanan, K. G. Shukla, K. G. Akamanchi, Synlett (2002) 2059
28. M. E. F. Braibante, H. T. S. Braibante, G. B. Rosso, J. K. da Roza, Synthesis (2001) 1935
29. L. F. Fieser, M. Fieser, Reagents for Organic Synthesis, Vol 1, Wiley Inc.: New York, 1967, p. 967
30. I. G. Collado, G. M. Massanet, M. S. Alonso, Tetrahedron Lett. 32 (1991) 3217
31. (2E,5Z)- and (2Z,5Z)-(5-Ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)-1-phenylethanone (5c). According to the typical procedure, from 3c (61 mg, 0.20 mmol) in CH3CN (3 mL) and PHBP (77 mg, 0.24 mmol) in CH3CN (2 mL), flash chromatography (toluene/EtOAc 6:1) afforded 5c as a mixture of two diastereoisomers (Table I); yield 60.5 mg (100 %); mp 167–169 ºC. MS (EI): m/z (rel. intensity) 303 (M+, 100), 302 (66), 274 (10), 258 (12), 257 (18), 230 (6), 226 (17), 198 (6), 180 (1), 159 (2), 158 (5), 131 (12), 130 (8), 105 (19), 103 (9), 85 (16), 77 (17), 68 (5). IR (KBr) of mixture of 2Z,5Z- and 2E,5Z-isomers: n 3442, 3193, 3079, 2987, 1727, 1689, 1639, 1616, 1550, 1369, 1318, 1220, 1196, 812, 762, 707, 651 cm–1. 1H-NMR (200 MHz, DMSO-d6): d (2E,5Z-isomer, distinct signals) = 1.29 (t, 3 H, CH3, J = 7.0 Hz), 4.27 (q, 2 H, CH2O, J = 7.0 Hz), 6.67 [s, 1 H, =CH (C2)], 6.97 [s, 1 H, =CH (C5)], 7.53–7.65 (m, 3 H, meta and para-phenyl), 7.89–7.94 (m, 2 H, ortho-phenyl), 12.71 (s, 1 H, NH); d (2Z,5Z-isomer) = 1.25 (t, 3 H, CH3, J = 7.1 Hz), 4.20 (q, 2 H, CH2O, J = 7.1 Hz), 6.91 [s, 1 H, =CH (C2)], 7.05 [s, 1 H, =CH (C5)], 7.53–7.65 (m, 3 H, meta and para-phenyl), 7.89–7.94 (m, 2 H, ortho-phenyl), 12.49 (s, 1 H, NH). 13C-NMR (50 MHz, DMSO-d6); d (2E,5Z-isomer) = 14.15 (CH3), 61.9 (CH2O), 97.1 [=CH (C2)], 117.3 [=CH (C5)], 128.0 (ortho-phenyl), 128.8 (meta-phenyl), 133.1 (para-phenyl), 137.6 [C(1)-phenyl], 139.5 [C= (C5)], 153.5 [C= (C2)], 165.7 (COring), 166.2 (COester), 189.0 (COexo). UV (CHCl3), (for a mixture of two diastereoisomers): lmax (e) 286 nm (11,400); 368 (29,400). Anal: Calcd. for C15H13NO4S: C, 59.39; H, 4.32; N, 4.62; S, 10.57. Found: C, 59.19; H, 4.24; N, 4.90; S, 10.30.
32. R. Markovi}, M. Baranac, Z. D`ambaski, V. Jovanovi}, J. Chem. Educ. (2003) accepted for publication
33. R. Markovi}, M. Baranac, S. Joveti}, Tetrahedron Lett. 44 (2003) 7087
34. S. I. Ali, M. D. Nikalje, A. Sudalai, Org. Lett. 1 (1999) 705.
J.Serb.Chem.Soc. 69(4)247–254(2004)
UDC 547.853:615.27/.28
JSCS – 3150
Original scientific paper
An expeditious synthesis of 3,4-dihydrobenzo[2,3-d]pyrimidines using inorganic solid supports
MAZAAHIR KIDWAI and AKKAL DEO MISHRA
Department of Chemistry, University of Delhi, Delhi-110007, India (e-mail: )
(Received 4 September 2003)
Abstract: A series of novel 5-substituted-8-cyano-4,6,7-triphenyl-3,4-dihydrobenzo [2,3-d]pyrimidines were synthesized by the condensation of 6-substituted-2-amino-1-benzoyl-3-cyano-5-hydroxy-4,5-diphenyl-1,3-cyclohexadiene and formamide, using inorganic solid supports under microwaves. Some of the compounds were found to be effective against some fungal and bacterial strains.
Keywords: benzopyrimidines, inorganic solid supports, microwave, environmentally benign synthesis, antimicrobial.
REFERENCES
1. M. M. Ghorab, S. G. Abdel-Hamide, A. E. El-Hakim, Indian J. Heterocycl. Chem. 5 (1995) 115
2. P. S. N. Reddy, T. V. Vasantha, Ch. Naga Raju, Indian J. Chem. 38B (1999) 40
3. J. F. Wolf, T. L. Ratham, M. C. Sleevi, J. A. Campbell, T. D. Greenwood, J. Med. Chem. 33 (1990) 161
4. M. Verma, J. N. Sinha, V. R. Gujrati, T. N. Bhalla, K. P. Bhargava, K. Shanker, Pharmacol. Res. Commun. 13 (1981) 967
5. A. Kumar, R. S. Verma, B. P. Jaju, J. N. Sinha, J. Indian Chem. Soc. 67 (1990) 920
6. J. Sarvanan, S. Mohan, K. S. Manjunatha, Indian J. Heterocycl. Chem. 8 (1998) 55
7. M. G. Nair, N. T. Nanavati, I. G. Nair, R. L. Kusliuk, Y. Gaumont, M. C. Hsiao, T. I. Kalman, J. Med. Chem. 29 (1986) 1754
8. E. Sikora, A. L. Jackman, D. R. Newell, A. H. Calvert, Biochem. Pharmacol. 37 (1988) 4047
9. A. L. Jackman, G. A. Taylor, W. Gibson, R. Kimbell, M. Brown, A. H. Calvert, I. R. Judson, L. R. Hughes, Cancer Res. 51 (1991) 5579
10. A. Gamal El-Hiti, F. Mohamed Abdel-Megeed, A. G. Yehia Mahmoud, Indian J. Chem. 39B (2000) 368
11. E. M. Berman, L. M. Werbel, J. Med. Chem. 34 (1991) 479
12. K. Smith, A. Gamol El-Hiti, F. Mohamed Abdel-Megeed, A. Mohamed Abdo, J. Org. Chem. 61 (1996) 647
13. P. R. Archana, V. K. Srivastava, A. Kumar, Indian J. Chem. 41B (2002) 2642
14. D. J. McNamara, E. M. Berman, D. W. Fry, L. M. Werbel, J. Med. Chem. 33 (1990) 2045
15. S. Caddick, Tetrahedron 51 (1995) 10403
16. R. S. Varma, D. E. Clark, W. H. Sutton, D. A. Lewis, Am. Cer. Soc. Cer. Trans. Ohio. 80 (1997) 357
17. R. S. Varma, R. K. Saini, Tetrahedron Lett. 38 (1997) 2623
18. M. Kidwai, P. Misra, Synth. Commun. 29 (1999) 3237
19. M. Kidwai, P. Misra, K. R. Bhushan, Polyhedron 18 (1999) 2641
20. R. S. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 38 (1997) 2039
21. M. Kidwai, K. R. Bhushan, Chem. Papers 53 (1999) 114
22. A. Loupy, A. Petit, J. Hamelin, F. T. Boullet, P. Jacqualt, D. Matha, Synthesis (1998) 1213
23. S. Deshayes, L. Marion, A. Loupy, J. L. Lucha, A. Petit, Tetrahedron Lett. 55 (1999) 10851
24. A. Loupy, P. Pigeon, H. Ramdani, P. Jacqualt, Synth. Commun. 24 (1994) 1159
25. D. C. Dittmer, Chem. Ind. (1997) 779
26. K. Gewald, Chem. Ber. 99 (1966) 1002
27. E. C. Taylor, A. Mckillop, The Chemistry of Cyclic Enaminonitriles and O-Aminonitriles, Interscience, New York, 1970, p. 213
28. S. Wattanasin, S. W. Murphy, Synthesis (1980) 647
29. H. W. Seeley, P. J. Van Denmark, Microbes in Action, W. H. Freeman and Co. USA, 1972
30. F. Karanagh, Analytical Microbiology, Academic Press, New York, 1963.
J.Serb.Chem.Soc. 69(4)255–264(2004)
UDC 547.298.61+543.554/.555:615.281
JSCS – 3151
Original scientific paper
Physico-chemical studies of some aminobenzoic acid hydrazide complexes
M. G. ABD EL WAHED, S. ABD EL WANEES, M. EL GAMEL and S. ABD EL HALEEM
Faculty of Science, Zagazig University, Zagazig, Egypt (e-mail: )
(Received 2 September, revised 19 November 2003)
Abstract: The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600 ºC.
Keywords: potentiometry, conductometry, stability constants, thermodynamic parameters, structure and thermal stability of complexes.
REFERENCES
1. J. Miyazawa, T. Kawabata, N. Ogasawara, Physiol. Mol. Plant Pathol. 52 (1998) 115
2. I. Imam, A. Mandour, F. Abd El-Azeem, Orient. J. Chem. 8 (1992) 160
3. A. E. Sengupta, A. Bhatnagar, S. K. Khan, J. Indian Chem. Soc. 64 (1987) 616
4. B. Singh, R. Srivastava, K. K. Narang, Synth. React. Inorg Met.-Org. Chem. 30 (2000) 1175
5. J. Cymerman-Craig, D. Willis, S. P. Rubbo, S. Edgar, Nature 176 (1995) 34
6. R. Malhorta, S. Kumar, K. S. Dhidsa, Indian J. Chem. 32A (1993) 5457
7. K. K. Narang, V. P. Singh, Synth. React. Inorg. Met.-Org. Chem. 23 (1993) 971
8. Z. Muhi-Eldeen, K. Al-Obidi, M. Nadir, F. Rochev, Eur. J. Med. Chem. 27 (1992) 101
9. J. Martinez, A. Martinez, M. L. Cuenca, A. D. Lopez, Synth. React. Inorg. Met.-Org. Chem. 18 (1988) 881
10. M. G. Ebd El Wahed, A. M. Hassan, H. A. Hammad, M. M. El Desoky, Bull. Korean. Chem. Soc. 13 (1992) 113
11. R. I. Machkhoshivili, G. V. Tsintsadze, S. A. Lobzhanidez, P. R. Machkhvili, Zh. Neorg. Khim. 41 (1996) 1854
12. A. M. Gad, A. El Dissouky, E. M. Mansour, A. El Maghraby, Polym. Degrad. Stab. 68 (2000) 153
13. H. Irving, H. S. Rossotti, J. Chem. Soc. 2904 (1954)
14. M. G. Abd El Wahed, S. Metwally, K. El Manakhly, H. Hammad, Cand. J. Anal. Sci. Spectrosc. 43 (1998) 37
15. S. Murakami, T. Yoshino, J. Inorg. Nucl. Chem. 43 (1981) 2065
16. A. E. Martell, Coordination Chemistry, Vol. 1, Van Nostrand, New York, 1971, pp. 466
17. M. G. Abd El Wahed, H. M. Katter, Egypt. J. Anal. Chem., accepted for publication (2003)
18. M. G. Abd El Wahed, J. Serb. Chem. Soc. 68 (2003) 463
19. K. Sone, Y. Fukuda, Inorganic Thermchromism, Inorganic Chemistry Concept, Vol. 10, Springer Verlag, Heidelberg, 1987
20. M. G. Abd El Wahed, A. Brakat, Afinidad 50 (1993) 93
21. M. G. Abd El Wahed, E. M. Nour, S. Teleb, S. Fahim, J. Therm. Anal. Cal., accepted for publication (2003)
22. P. G. Mundhe, P. B. Deogonkar, R. A. Bhobe, J . Indian Chem. Soc. 75 (1998) 349.
J.Serb.Chem.Soc. 69(4)265–271(2004)
UDC 547.21:54–12+539.6
JSCS – 3152
Original scientific paper
On the relation between Zenkevich and Wiener indices of
alkanes
IVAN GUTMANa, BORIS FURTULAa, BILJANA ARSI]b and @ARKO BO[KOVI]b
aFaculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, and bFaculty of Science, University of Ni{, Vi{egradska 33, 18000 Ni{, Serbia and Montenegro
(Received 4 November 2003)
Abstract: A relatively complicated relation was found to exist between the quantity U, recently introduced by Zenkevich (providing a measure of internal molecular energy), and the Wiener index W (measuring molecular surface area and intermolecular forces). We now report a detailed analysis of this relation and show that, in the case of alkanes, its main features are reproduced by the formula U = –aW + b + gn1; where n1 is the number of methyl groups, and a, b and g are constants, depending only on the number of carbon atoms. Thus, for isomeric alkanes with the same number of methyl groups, U and W are linearly correlated.
Keywords: Zenkevich index, Wiener index, alkanes.
REFERENCES
1. I. G Zenkevich, Zh. Org. Khim. 34 (1998) 1463
2. I. G. Zenkevich, Fresenius J. Anal. Chem. 365 (1999) 305
3. I. G. Zenkevich, Rus. J. Phys. Chem. 73 (1999) 797
4. I. G. Zenkevich, Zh. Anal. Khim. 55 (2000) 1091
5. I. G. Zenikevich, Zh. Org. Khim. 37 (2001) 283
6. I. G. Zenkevich, A. N. Marinichev, Zh. Strukt. Khim. 42 (2001) 893
7. I. Gutman, I. G. Zenkevich, Z. Naturforsch. 57a (2002) 824
8. I. Gutman, D. Vidovi}, B. Furtula, I. G. Zenkevich, J. Serb. Chem. Soc. 68 (2003) 401
9. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986
10. I. Gutman, T. Körtvélyesi, Z. Naturforsch. 50a (1995) 669
11. I. Gutman, J. H. Potgieter, J. Serb. Chem. Soc. 62 (1997) 185
12. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17
13. Results analogous to those presented in Table I, for n = 13, 14, 15, are available from the authors (B. F.) upon request.
J.Serb.Chem.Soc. 69(4)273–281(2004)
UDC 549.67+553.534:539.26
JSCS – 3153
Original scientific paper
Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid
ANA RADOSAVLJEVI]-MIHAJLOVI]1, VERA DONDUR2,, ALEKSANDRA DAKOVI]1, JOVAN LEMI]1 and MAGDALENA TOMA[EVI]-^ANOVI]1
1Institute for Technology of Nuclear and Other Mineral Raw Materials, Applied Physical Chemistry Unit, P.O. Box 390, 86 Franchet d’Esperey Street, 11000 Belgrade, and 2Faculty of Physical Chemistry, P.O. Box 137, 11000 Belgrade, Serbia and Montenegro
(Received 27 August, revised 18 November 2003)
Abstract: Samples of natural HEU-type zeolites – clinoptilolite-Ca, from the Novakovici deposit (near Prijedor, Bosnia and Herzegovina) were treated with the hydrochloric acid of various concentrations (from 10-3 M to 2 M). Zeolitic tuffs before and after the acid treatment were examined using IR, XRPD, and chemical analyses. The changes in the crystal structure of acid treated samples showed a significant reduction in the crystallinity of zeolitic tuffs (60–70 %), which were effected by hydrochloric acid with concentrations of 1 M and above.
Keywords: HEU-type zeolite, acid modification, X-ray analysis, Novakovici.
REFERENCE
1. S. D. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J. D. Grice, F. Liebau, J. A. Mandarino, H. Minato, H. E. Nickel, E. Passaglia, R. D. Peacor, S. Quartieri, R. Rinaldi, M. Ross, A. R. Sheppard, E. Tillmanns, G. Vezzalini, Recommended nomenclature for zeolite minerals: Report of the Subcommittee on zeolites of the Internationa Mineralogical Association, Commission on New Minerals and Mineral Names, American Mineralogist Special Feature (version 2), (1998) 1
2. M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevir, Amsterdam, 2001, p. 1
3. K. Koyama, Y. Takéuchi, Z. Kristallographie 145 (1977) 216
4. E. Galli, G. Gottardi, H. Mayer, A. Preisinger, E. Passaglia, Acta Crystallographica B 39 (1983) 189
5. P. Misaelides, A. Godelitsas, F. Link, H. Baummann, Microporous Materials 6 (1996) 37
6. S. Yamamoto, S. Sugiyama, O. Matsuoka, K. Kohmura, T. Honda, Y. Banno, H. Nozoye, J. Phys. Chem. 100 (1996) 18474
7. T. Wüst, J. Stolz, T. Armbruster, American Mineralogist 84 (1999) 1126
8. T. Armbruster, Studies in Surface Science and Catalysis, Elsevir, Amsterdam, 2001, p. 13
9. A. Filippidis, A. Godelitsas, D. Charistos, P. Misaelides, A. Kassoli-Fournaraki, Appl. Clay Sci. 11 (1996) 199
10. D. Ming, J. Dixon, Clays Clay Miner. 36 (1988) 244
11. G. R. Garvey, Powder Diffr. 1 (1986) 114
12. D. Balzar, H. Ledbetter, Software for Comparative Analysis of Diffraction – line Brodening, Advances in X-ray Analysis, Vol. 39, V. Gilfrich et al., Eds., Plenum Press, New York, 1997
13. A. Radosavljevi}-Mihajlovi}, A. Dakovi}, M. Toma{evi}-^anovi}, J. Mining and Metallurgy 38 A (2002) 87
14. A. Arcoya et al., Clay Minerals 29 (1994) 123
15. B. Tomazovi}, T. ^erani}, Zeolites 16 (1996) 301
16. G. Rodriquez-Fuentes, R. A. Ruiz-Salvodor, M. Mir, O. Picazo, G. Quintana, M. Delgado, Microporous and Mesoporous Materials 20 (1998) 269.
J.Serb.Chem.Soc. 69(4)283–298(2004)
UDC 546.863:66.061/.062
JSCS – 3154
Original scientific paper
Selective liquid-liquid extraction of antimony(III) from
hydrochloric acid media by N-n-octylaniline in xylene
B. M. SARGAR, M. M. RAJMANE and M. A. ANUSE
Analytical Chemistry Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, India (e-mail: )
(Received 2 June 2003)
Abstract: N-n-Octylaniline in xylene was used for the extraction separation of antimony(III) from hydrochloric acid media. Antimony(III) was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III) from tellurium(IV), selenium(IV), lead(II), bismuth(III), tin(IV), germanium(IV), copper(II), gold(III), iron(III) and zinc(II). The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.
Keywords: antimony(III), N-n-octylaniline, solvent extraction.
REFERENCES
1. C. Juan, N. Cristina, Afinidad 39 (377) (1982) 51
2. A. Alian, W. Sanad, Talanta 14 (1967) 659
3. S. Toshio, O. Hiroyuki, S. Kiyoshi, Anal. Sci. 2 (1986) 25
4. Y. Koichi, S. Takayuki, Anal. Sci. 16 (2000) 641
5. P. Navarro, J. Simpson, F. J. Alguacil, Hydrometallurgy 53 (1999) 121
6. A. D. Barve, G. S. Desai, V. M. Shinde, Bull. Chem. Soc. Jpn. 66 (1993) 1079
7. D. B. Dreisinger, B. J. Y. Leong, B. R. Saito, P. G. West-Shells, Hydrometall. Proc. Milton E. Wadsworth Int. Symp. 4 (1993) 801
8. D. B. Dreisinger, B. J. Y. Leong, I. Grewal, Impurity Control Disposal Hydrometall. Processes, Annu. Hydrometall 24th Meeting, (1994) 71
9. S. Facon, G. Cote, D. Bauer, Solvent Extr. Ion Exch. 9 (1991) 717
10. S. G. Sarkar, P. M. Dhadke, Sep. Purif. Technol. 15 (1999) 131
11. Szymanowski, Jan, Miner. Process. Extr. Metall. Rev. 18 (1998) 389
12. S. V. Bandekar, P. M. Dhadke, Solvent Extraction for the 21st Century, Proceedings of ISEC 99 Barcelona, Spain, July 11–16 (1999) 71
13. S. V. Bandekar, P. M. Dhadke, Indian J. Chem. 39 A (2000) 548
14. K. A. Ali, A. K. Vanjara, Indian J. Chem. Tech. 8 (2001) 239
15. A. P. Mehrotra, M. Rajan, V. M. Shinde, Indian. J. Chem. 35A (1996) 530
16. G. K. Schweitzer, L. E. Storms, Anal. Chim. Acta. 19 (1958) 154
17. S. S. M. A. Khorasani, M. H. Khundkar, Anal. Chim. Acta. 21 (1959) 24
18. T. N. Lokhande, M. A. Anuse, M. B. Chavan, Talanta 46 (1998) 163
19. T. N. Lokhande, M. A. Anuse, M. B. Chavan, Talanta 47 (1998) 823
20. T. N. Lokhande, G. B. Kolekar, M. A. Anuse, M. B. Chavan, Sep. Sci. Technol. 35 (2000) 153
21. T. N. Lokhande, M . A. Anuse, J. Saudi Chem. Soc. 4 (2000) 1
22. J. Bassett, R. C. Denny, G. H. Jeffery, J. Mendham, Vogel’s Text Book of Quantitative Inorganic Analysis, 4th ed., Longman, London, 1979
23. Z. G. Gardlund, R. J. Curtis, G. W. Smith, Liq. Cryst. Ord. Fluids 2 (1973) 541
24. Z. Marczenko, Spectrophotometric Determination of Elements, Wiley, New York, 1976, p.p. 125, 326, 605, 549, 275
25. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley, 1988
26. G. B. Kolekar, T. N. Lokhnde, P. N. Bhosale, M. A. Anuse, Anal. Lett. 31 (1998) 2241
27. M. A. Anuse, S. R. Kuchekar, M. B. Chavan, Indian J. Chem. 25A (1986) 1041
28. A. I. Vogel, Textbook of Quantitative Chemical Analysis, 5th ed., Longman, London, 1997 p. 690
29. G. B. Kolekar, M. A. Anuse, Bull. Chem. Soc. Jpm. 71 (1998) 859
30. G. B. Kolekar, B. M. Sargar, M. A. Anuse, Chem. Environ. Res. 9 (2000) 37
31. E. B. Sandell, Colorimetric Determination of Traces of Metals, 3rd ed., Interscience, New York, 1965, p. 503
32. P. P. Kish, I. S. Baloq, V. A. Andrukh, M. G. Golomb, Zh. Anal. Khim. 45 (1990) 915.
J.Serb.Chem.Soc. 69(4)299–307(2004)
UDC 547.421–036.7+547.458.88+621.78.063
JSCS – 3155
Original scientific paper
Pectinases partitioning in aqueous two-phase systems: an
integration of the systems poly(ethylene glycol)/crude dextran and poly(ethylene glycol)/ammonium sulphate
MIRJANA G. ANTOV DRAGINJA M. PERI^IN and STANA N. PEJIN
Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia and Montenegro (e-mail: )
(Received 4 November 2003)
Abstract: The partitioning of pectinases in the poly(ethylene glucol)4000/ammonium sulpohate system was studied and also its application for enzymes extraction from the top phase of the poly(ethylene glucol)4000/crude dextran system. Almost complete one-sided partition of endo-pectinase and exo-pectinase to the bottom phase of the polymer/salt system was achieved at a tie-line length of 37.16 %. The concentration factors were 1.73 and 3.25, respectively. The highest total endo- and exo-pectinase yields (72.41 % and 69.46 %, respectively) were obtained by integration of the polymer/polymer system at a tie-line of 8.61 % and a high phase volume ratio and the polymer/salt system at a tie-line of 30.23 % and a low phase volume ratio. Integration of the partitioning at a high tie-line length in the polymer/polimer and a low tie-line length in the polymer/salt system resulted in a total concentration factor of 1.5 and a purification of 1.66 fold for exo-pectinase. The addition of phosphate to this integrated system improved the total concentration factor and purification fold of the activity to 1.73 and 2.14, respectively.
Keywords: aqueous two-phase system, partitioning, pectinases.
REFERENCES
1. W. Fogarty, C. Kelly, in Microbial Enzyme and Biotechnology, W. Fogarty Ed., Applied Science Publishers, London, 1983, p. 131
2. S. N. Gummadi, T. Panda, Process Biochem. 38 (2003) 979
3. P-A. Albertsson, Purtition of Cell Particles and Macromolecules, 3rd edition, Wiley, New York, 1986
4. G. M. Zijlstra, C. D. de Gooijer, J. Tramper, Curr. Opin. Biotechnol. 9 (1998) 171
5. J. Perrson, H-O. Johansson, F. Tjerneld, J. Chromatogr. A 864 (1999) 31
6. R. Hatti-Kaul, Mol. Biotechnol. 19 (2001) 269
7. F. Tjerneld, I. Persson, P-A. Albertsson, B. Hahn-Hagerdal, Biotechnol. Bioeng. 27 (1985) 1036
8. A. Venancio, C. Almeida, J. A. Teixeira, J. Chromatogr. B 680 (1996) 131
9. F. Tjerneld, S. Berner, A. Cajarville, G. Johansson, Enzyme Microb. Technol. 8 (1986) 417
10. L. H. M. da Silva, A. J. A. Meirelles, Carbohydr. Polymers 42 (2000) 279
11. Y-T. Wu, M. Pereira, A. Venancio, J. Teixeira, J. Chromatogr. A 929 (2001) 23
12. G. Miller, Anal. Chem. 31 (1959) 426
13. S. Hotha, R. Banik, J. Chem. Tech. Biotechnol. 69 (1997) 5
14. D. Peri~in, S. Kevre{an, L. Banka, M. Antov, M. [krinjar, Biotechnol. Lett. 14 (1992) 127
15. G. Aguilar, C. Huitron, Biotechnol. Lett. 12 (1990) 655
16. T. Furuya, S. Yamada, J. Zhu, Y. Yamaguchi, Y. Iwai, Y. Arai, Fluid Phase Equilib. 125 (1996) 89
17. M. M. Bradford, Anal. Biochem. 72 (1976) 248
18. E. Andersson, A-C. Johansson, B. Hahn-Hagerdal, Enzyme Microb. Technol. 7 (1985) 333
19. B. Skoog, Vox Sang. 37 (1979) 345
20. A. Salabat, Fluid Phase Equilib. 187–188 (2001) 489
21. E. Andersson, B. Hahn-Hagerdal, Enzyme Microb. Technol. 12 (1990) 242