ISSN 0352-5139

J. Serb. Chem. Soc. Vol. 69, No. 4(2004)

CONTENTS

Organic Chemistry

R. Markovi}, M. Baranac and Z. D`ambaski: Facile rearrangement of push-pull 5-substituted 4-oxothiazolidines induced by pyridinium hydrobromide perbromide under homogeneous reaction conditions

239

M. Kidwai and A. D. Mishra: An expeditious synthesis of 3,4-dihydro-benzo[2,3-d]pyrimidines using inorganic solid supports

247

Inorganic Chemistry

M. G. Abd El Wahed, S. Abd El Wanees, M. El Gamel and S. Abd El Haleem: Physico-chemical studies of some aminobenzoic acid hydrazide complexes

255

Physical Chemistry

I. Gutman, B. Furtula, B. Arsi} and @. Bo{kovi}: On the relation between Zenkevich and Wiener indices of alkanes

265

A. Radosavljevi}-Mihajlovi}, V. Dondur, A. Dakovi}, J. Lemi} and M. Toma{evi}-^anovi}: Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid

273

B. M. Sargar, M. M. Rajmane and M. A. Anuse: Selective liquid-liquid extraction of antimony(III) from hydrochloric acid media by N-n-octylaniline in xylene

283

M. G. Antov, D. M. Peri~in and S. N. Pejin: Pectinases partitioning in aqueous two-phase systems: an integration of the systems poly(ethylene glycol)crude dextran and poly(ethylene glycol)ammonium sulphate

299

Analytical Chemistry

V. Vasi}, J. Savi} and N. Vukeli}: Sorption-spectrophotometric method for the determination of Pd(II) in aqueous solutions

309

J.Serb.Chem.Soc. 69(4)239–245(2004)

UDC 547.789+547.82

JSCS – 3149

Original scientific paper

Facile rearrangement of push-pull 5-substituted 4-oxothiazolidines induced by pyridinium hydrobromide perbromide under homogeneous reaction conditions

RADE MARKOVI]a,b, MARIJA BARANACa,b# and ZDRAVKO D@AMBASKIb#

aFaculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 158, 11000 Belgrade
(e-mail: ) and bCenter for Chemistry ICTM, P.O.Box 473, 11000 Belgrade, Serbia and Montenegro

(Received 3 October 2003)

Abstract: Pyridinium hydrobromide perbromide (PHBP) is a highly efficient reagent for the conversion of 5-substituted-2-alkylidene-4-oxothiazolidine derivatives to the corresponding thiazolidines with two fully delocalized exocyclic double bonds at the C(2) and C(5) positions. This conversion as a two-step bromination-rearrangement process occurs in acetonitrile under homogeneous reaction conditions.

Keywords: thiazolidine, rearrangement, pyridinium hydrobromide perbromide, acetonitrile.

REFERENCES AND NOTES

1. Z.-H. Xu, Y.-F. Jie, M.-X. Wang, Z.-T. Huang, Synthesis (2002) 523

2. P. Brunerie, J. P. Célérier, M. Huché, G. Lhommet, Synthesis (1985) 735

3. P. Nemes, B. Balázs, G. Tóth, P. Scheiber, Synlett (2000) 1327

4. R. C. F. Jones, P. Patel, S. C. Hirst, I. Turner, Tetrahedron 53 (1997) 11781

5. A. S. Howard, G. C. Gerrans, J. P. Michael, J. Org. Chem. 45 (1980) 1713

6. L. Calvo, A. González-Ortega, M. C. SaZudo, Synthesis (2002) 2450

7. R. Markovi}, M. Baranac, Heterocycles 48 (1998) 893

8. R. Markovi}, M. Baranac, Z. D`ambaski, M. Stojanovi}, P. J. Steel, Tetrahedron 59 (2003) 7803

9. R. Markovi}, A. Shirazi, M. Baranac, Z. D`ambaski, D. Mini}, J. Phys. Org. Chem. 17 (2004) 118

10. R. Markovi}, M. Baranac, Synlett (2000) 607

11. R. Markovi}, Z. D`ambaski, M. Baranac, Tetrahedron 57 (2001) 5833

12. I. Kuwajima, E. Nakamura, in Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, C. H. Heathcock, Eds.; Pergamon: Oxford, 1991; vol II, pp. 441–473

13. E. Negishi, J. Organomet. Chem. 576 (1999) 179

14. A. Bachki, F. Foubelo, M. Yus, Tetrahedron 53 (1997) 4921

15. C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, Tetrahedon Lett. 33 (1992) 919

16. W. G. Dauben, A. M. Warshawsky, Synth. Commun. 18 (1988) 1323

17. J. Das, J. A. Reid, D. R. Kronenthal, J. Singh, P. D. Pansegrau, R. H. Mueller, Tetrahedron Lett. 33 (1992) 7835

18. M. Yamada, K. Nakao, T. Fukui, K. Nunami, Tetrahedron 52 (1996) 5751

19. R. Danion-Bougot, D. Danion, G. Francis, Tetrahedron Lett. 31 (1990) 3739

20. R. W. Armstrong, J. E. Tellew, E. J. Moran, J. Org. Chem. 57 (1992) 2208

21. R. S. Coleman, A. J. Carpenter, J. Org. Chem. 58 (1993) 4452

22. B. H. Bakker, Y. L. Chow, Can. J. Chem. 60 (1982) 2268

23. C. P. Kordik, A. B. Reitz, J. Org. Chem. 61 (1996) 5644

24. S. P. Singh, S. S. Parmar, K. Raman, V. I. Stenberg, Chem. Rev. 81 (1981) 175

25. J-M. Lehn, Angew. Chem. Int. Ed. Engl. 29 (1990) 1304 and references therein

26. N. G. Ramesh, E. H. Heijne, A. J. H. Klunder, B. Zwanenburg, Tetrahedron 58 (2002) 1368

27. G. V. Ramanarayanan, K. G. Shukla, K. G. Akamanchi, Synlett (2002) 2059

28. M. E. F. Braibante, H. T. S. Braibante, G. B. Rosso, J. K. da Roza, Synthesis (2001) 1935

29. L. F. Fieser, M. Fieser, Reagents for Organic Synthesis, Vol 1, Wiley Inc.: New York, 1967, p. 967

30. I. G. Collado, G. M. Massanet, M. S. Alonso, Tetrahedron Lett. 32 (1991) 3217

31. (2E,5Z)- and (2Z,5Z)-(5-Ethoxycarbonylmethylidene-4-oxothiazolidin-2-ylidene)-1-phenylethanone (5c). According to the typical procedure, from 3c (61 mg, 0.20 mmol) in CH3CN (3 mL) and PHBP (77 mg, 0.24 mmol) in CH3CN (2 mL), flash chromatography (toluene/EtOAc 6:1) afforded 5c as a mixture of two diastereoisomers (Table I); yield 60.5 mg (100 %); mp 167–169 ºC. MS (EI): m/z (rel. intensity) 303 (M+, 100), 302 (66), 274 (10), 258 (12), 257 (18), 230 (6), 226 (17), 198 (6), 180 (1), 159 (2), 158 (5), 131 (12), 130 (8), 105 (19), 103 (9), 85 (16), 77 (17), 68 (5). IR (KBr) of mixture of 2Z,5Z- and 2E,5Z-isomers: n 3442, 3193, 3079, 2987, 1727, 1689, 1639, 1616, 1550, 1369, 1318, 1220, 1196, 812, 762, 707, 651 cm–1. 1H-NMR (200 MHz, DMSO-d6): d (2E,5Z-isomer, distinct signals) = 1.29 (t, 3 H, CH3, J = 7.0 Hz), 4.27 (q, 2 H, CH2O, J = 7.0 Hz), 6.67 [s, 1 H, =CH (C2)], 6.97 [s, 1 H, =CH (C5)], 7.53–7.65 (m, 3 H, meta and para-phenyl), 7.89–7.94 (m, 2 H, ortho-phenyl), 12.71 (s, 1 H, NH); d (2Z,5Z-isomer) = 1.25 (t, 3 H, CH3, J = 7.1 Hz), 4.20 (q, 2 H, CH2O, J = 7.1 Hz), 6.91 [s, 1 H, =CH (C2)], 7.05 [s, 1 H, =CH (C5)], 7.53–7.65 (m, 3 H, meta and para-phenyl), 7.89–7.94 (m, 2 H, ortho-phenyl), 12.49 (s, 1 H, NH). 13C-NMR (50 MHz, DMSO-d6); d (2E,5Z-isomer) = 14.15 (CH3), 61.9 (CH2O), 97.1 [=CH (C2)], 117.3 [=CH (C5)], 128.0 (ortho-phenyl), 128.8 (meta-phenyl), 133.1 (para-phenyl), 137.6 [C(1)-phenyl], 139.5 [C= (C5)], 153.5 [C= (C2)], 165.7 (COring), 166.2 (COester), 189.0 (COexo). UV (CHCl3), (for a mixture of two diastereoisomers): lmax (e) 286 nm (11,400); 368 (29,400). Anal: Calcd. for C15H13NO4S: C, 59.39; H, 4.32; N, 4.62; S, 10.57. Found: C, 59.19; H, 4.24; N, 4.90; S, 10.30.

32. R. Markovi}, M. Baranac, Z. D`ambaski, V. Jovanovi}, J. Chem. Educ. (2003) accepted for publication

33. R. Markovi}, M. Baranac, S. Joveti}, Tetrahedron Lett. 44 (2003) 7087

34. S. I. Ali, M. D. Nikalje, A. Sudalai, Org. Lett. 1 (1999) 705.

J.Serb.Chem.Soc. 69(4)247–254(2004)

UDC 547.853:615.27/.28

JSCS – 3150

Original scientific paper

An expeditious synthesis of 3,4-dihydrobenzo[2,3-d]pyrimidines using inorganic solid supports

MAZAAHIR KIDWAI and AKKAL DEO MISHRA

Department of Chemistry, University of Delhi, Delhi-110007, India (e-mail: )

(Received 4 September 2003)

Abstract: A series of novel 5-substituted-8-cyano-4,6,7-triphenyl-3,4-dihydrobenzo [2,3-d]pyrimidines were synthesized by the condensation of 6-substituted-2-amino-1-benzoyl-3-cyano-5-hydroxy-4,5-diphenyl-1,3-cyclohexadiene and formamide, using inorganic solid supports under microwaves. Some of the compounds were found to be effective against some fungal and bacterial strains.

Keywords: benzopyrimidines, inorganic solid supports, microwave, environmentally benign synthesis, antimicrobial.

REFERENCES

1. M. M. Ghorab, S. G. Abdel-Hamide, A. E. El-Hakim, Indian J. Heterocycl. Chem. 5 (1995) 115

2. P. S. N. Reddy, T. V. Vasantha, Ch. Naga Raju, Indian J. Chem. 38B (1999) 40

3. J. F. Wolf, T. L. Ratham, M. C. Sleevi, J. A. Campbell, T. D. Greenwood, J. Med. Chem. 33 (1990) 161

4. M. Verma, J. N. Sinha, V. R. Gujrati, T. N. Bhalla, K. P. Bhargava, K. Shanker, Pharmacol. Res. Commun. 13 (1981) 967

5. A. Kumar, R. S. Verma, B. P. Jaju, J. N. Sinha, J. Indian Chem. Soc. 67 (1990) 920

6. J. Sarvanan, S. Mohan, K. S. Manjunatha, Indian J. Heterocycl. Chem. 8 (1998) 55

7. M. G. Nair, N. T. Nanavati, I. G. Nair, R. L. Kusliuk, Y. Gaumont, M. C. Hsiao, T. I. Kalman, J. Med. Chem. 29 (1986) 1754

8. E. Sikora, A. L. Jackman, D. R. Newell, A. H. Calvert, Biochem. Pharmacol. 37 (1988) 4047

9. A. L. Jackman, G. A. Taylor, W. Gibson, R. Kimbell, M. Brown, A. H. Calvert, I. R. Judson, L. R. Hughes, Cancer Res. 51 (1991) 5579

10. A. Gamal El-Hiti, F. Mohamed Abdel-Megeed, A. G. Yehia Mahmoud, Indian J. Chem. 39B (2000) 368

11. E. M. Berman, L. M. Werbel, J. Med. Chem. 34 (1991) 479

12. K. Smith, A. Gamol El-Hiti, F. Mohamed Abdel-Megeed, A. Mohamed Abdo, J. Org. Chem. 61 (1996) 647

13. P. R. Archana, V. K. Srivastava, A. Kumar, Indian J. Chem. 41B (2002) 2642

14. D. J. McNamara, E. M. Berman, D. W. Fry, L. M. Werbel, J. Med. Chem. 33 (1990) 2045

15. S. Caddick, Tetrahedron 51 (1995) 10403

16. R. S. Varma, D. E. Clark, W. H. Sutton, D. A. Lewis, Am. Cer. Soc. Cer. Trans. Ohio. 80 (1997) 357

17. R. S. Varma, R. K. Saini, Tetrahedron Lett. 38 (1997) 2623

18. M. Kidwai, P. Misra, Synth. Commun. 29 (1999) 3237

19. M. Kidwai, P. Misra, K. R. Bhushan, Polyhedron 18 (1999) 2641

20. R. S. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 38 (1997) 2039

21. M. Kidwai, K. R. Bhushan, Chem. Papers 53 (1999) 114

22. A. Loupy, A. Petit, J. Hamelin, F. T. Boullet, P. Jacqualt, D. Matha, Synthesis (1998) 1213

23. S. Deshayes, L. Marion, A. Loupy, J. L. Lucha, A. Petit, Tetrahedron Lett. 55 (1999) 10851

24. A. Loupy, P. Pigeon, H. Ramdani, P. Jacqualt, Synth. Commun. 24 (1994) 1159

25. D. C. Dittmer, Chem. Ind. (1997) 779

26. K. Gewald, Chem. Ber. 99 (1966) 1002

27. E. C. Taylor, A. Mckillop, The Chemistry of Cyclic Enaminonitriles and O-Aminonitriles, Interscience, New York, 1970, p. 213

28. S. Wattanasin, S. W. Murphy, Synthesis (1980) 647

29. H. W. Seeley, P. J. Van Denmark, Microbes in Action, W. H. Freeman and Co. USA, 1972

30. F. Karanagh, Analytical Microbiology, Academic Press, New York, 1963.

J.Serb.Chem.Soc. 69(4)255–264(2004)

UDC 547.298.61+543.554/.555:615.281

JSCS – 3151

Original scientific paper

Physico-chemical studies of some aminobenzoic acid hydrazide complexes

M. G. ABD EL WAHED, S. ABD EL WANEES, M. EL GAMEL and S. ABD EL HALEEM

Faculty of Science, Zagazig University, Zagazig, Egypt (e-mail: )

(Received 2 September, revised 19 November 2003)

Abstract: The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600 ºC.

Keywords: potentiometry, conductometry, stability constants, thermodynamic parameters, structure and thermal stability of complexes.

REFERENCES

1. J. Miyazawa, T. Kawabata, N. Ogasawara, Physiol. Mol. Plant Pathol. 52 (1998) 115

2. I. Imam, A. Mandour, F. Abd El-Azeem, Orient. J. Chem. 8 (1992) 160

3. A. E. Sengupta, A. Bhatnagar, S. K. Khan, J. Indian Chem. Soc. 64 (1987) 616

4. B. Singh, R. Srivastava, K. K. Narang, Synth. React. Inorg Met.-Org. Chem. 30 (2000) 1175

5. J. Cymerman-Craig, D. Willis, S. P. Rubbo, S. Edgar, Nature 176 (1995) 34

6. R. Malhorta, S. Kumar, K. S. Dhidsa, Indian J. Chem. 32A (1993) 5457

7. K. K. Narang, V. P. Singh, Synth. React. Inorg. Met.-Org. Chem. 23 (1993) 971

8. Z. Muhi-Eldeen, K. Al-Obidi, M. Nadir, F. Rochev, Eur. J. Med. Chem. 27 (1992) 101

9. J. Martinez, A. Martinez, M. L. Cuenca, A. D. Lopez, Synth. React. Inorg. Met.-Org. Chem. 18 (1988) 881

10. M. G. Ebd El Wahed, A. M. Hassan, H. A. Hammad, M. M. El Desoky, Bull. Korean. Chem. Soc. 13 (1992) 113

11. R. I. Machkhoshivili, G. V. Tsintsadze, S. A. Lobzhanidez, P. R. Machkhvili, Zh. Neorg. Khim. 41 (1996) 1854

12. A. M. Gad, A. El Dissouky, E. M. Mansour, A. El Maghraby, Polym. Degrad. Stab. 68 (2000) 153

13. H. Irving, H. S. Rossotti, J. Chem. Soc. 2904 (1954)

14. M. G. Abd El Wahed, S. Metwally, K. El Manakhly, H. Hammad, Cand. J. Anal. Sci. Spectrosc. 43 (1998) 37

15. S. Murakami, T. Yoshino, J. Inorg. Nucl. Chem. 43 (1981) 2065

16. A. E. Martell, Coordination Chemistry, Vol. 1, Van Nostrand, New York, 1971, pp. 466

17. M. G. Abd El Wahed, H. M. Katter, Egypt. J. Anal. Chem., accepted for publication (2003)

18. M. G. Abd El Wahed, J. Serb. Chem. Soc. 68 (2003) 463

19. K. Sone, Y. Fukuda, Inorganic Thermchromism, Inorganic Chemistry Concept, Vol. 10, Springer Verlag, Heidelberg, 1987

20. M. G. Abd El Wahed, A. Brakat, Afinidad 50 (1993) 93

21. M. G. Abd El Wahed, E. M. Nour, S. Teleb, S. Fahim, J. Therm. Anal. Cal., accepted for publication (2003)

22. P. G. Mundhe, P. B. Deogonkar, R. A. Bhobe, J . Indian Chem. Soc. 75 (1998) 349.

J.Serb.Chem.Soc. 69(4)265–271(2004)

UDC 547.21:54–12+539.6

JSCS – 3152

Original scientific paper

On the relation between Zenkevich and Wiener indices of
alkanes

IVAN GUTMANa, BORIS FURTULAa, BILJANA ARSI]b and @ARKO BO[KOVI]b

aFaculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, and bFaculty of Science, University of Ni{, Vi{egradska 33, 18000 Ni{, Serbia and Montenegro

(Received 4 November 2003)

Abstract: A relatively complicated relation was found to exist between the quantity U, recently introduced by Zenkevich (providing a measure of internal molecular energy), and the Wiener index W (measuring molecular surface area and intermolecular forces). We now report a detailed analysis of this relation and show that, in the case of alkanes, its main features are reproduced by the formula U = –aW + b + gn1; where n1 is the number of methyl groups, and a, b and g are constants, depending only on the number of carbon atoms. Thus, for isomeric alkanes with the same number of methyl groups, U and W are linearly correlated.

Keywords: Zenkevich index, Wiener index, alkanes.

REFERENCES

1. I. G Zenkevich, Zh. Org. Khim. 34 (1998) 1463

2. I. G. Zenkevich, Fresenius J. Anal. Chem. 365 (1999) 305

3. I. G. Zenkevich, Rus. J. Phys. Chem. 73 (1999) 797

4. I. G. Zenkevich, Zh. Anal. Khim. 55 (2000) 1091

5. I. G. Zenikevich, Zh. Org. Khim. 37 (2001) 283

6. I. G. Zenkevich, A. N. Marinichev, Zh. Strukt. Khim. 42 (2001) 893

7. I. Gutman, I. G. Zenkevich, Z. Naturforsch. 57a (2002) 824

8. I. Gutman, D. Vidovi}, B. Furtula, I. G. Zenkevich, J. Serb. Chem. Soc. 68 (2003) 401

9. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986

10. I. Gutman, T. Körtvélyesi, Z. Naturforsch. 50a (1995) 669

11. I. Gutman, J. H. Potgieter, J. Serb. Chem. Soc. 62 (1997) 185

12. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17

13. Results analogous to those presented in Table I, for n = 13, 14, 15, are available from the authors (B. F.) upon request.

J.Serb.Chem.Soc. 69(4)273–281(2004)

UDC 549.67+553.534:539.26

JSCS – 3153

Original scientific paper

Physicochemical and structural characteristics of HEU-type zeolitic tuff treated by hydrochloric acid

ANA RADOSAVLJEVI]-MIHAJLOVI]1, VERA DONDUR2,, ALEKSANDRA DAKOVI]1, JOVAN LEMI]1 and MAGDALENA TOMA[EVI]-^ANOVI]1

1Institute for Technology of Nuclear and Other Mineral Raw Materials, Applied Physical Chemistry Unit, P.O. Box 390, 86 Franchet d’Esperey Street, 11000 Belgrade, and 2Faculty of Physical Chemistry, P.O. Box 137, 11000 Belgrade, Serbia and Montenegro

(Received 27 August, revised 18 November 2003)

Abstract: Samples of natural HEU-type zeolites – clinoptilolite-Ca, from the Novakovici deposit (near Prijedor, Bosnia and Herzegovina) were treated with the hydrochloric acid of various concentrations (from 10-3 M to 2 M). Zeolitic tuffs before and after the acid treatment were examined using IR, XRPD, and chemical analyses. The changes in the crystal structure of acid treated samples showed a significant reduction in the crystallinity of zeolitic tuffs (60–70 %), which were effected by hydrochloric acid with concentrations of 1 M and above.

Keywords: HEU-type zeolite, acid modification, X-ray analysis, Novakovici.

REFERENCE

1. S. D. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J. D. Grice, F. Liebau, J. A. Mandarino, H. Minato, H. E. Nickel, E. Passaglia, R. D. Peacor, S. Quartieri, R. Rinaldi, M. Ross, A. R. Sheppard, E. Tillmanns, G. Vezzalini, Recommended nomenclature for zeolite minerals: Report of the Subcommittee on zeolites of the Internationa Mineralogical Association, Commission on New Minerals and Mineral Names, American Mineralogist Special Feature (version 2), (1998) 1

2. M. M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevir, Amsterdam, 2001, p. 1

3. K. Koyama, Y. Takéuchi, Z. Kristallographie 145 (1977) 216

4. E. Galli, G. Gottardi, H. Mayer, A. Preisinger, E. Passaglia, Acta Crystallographica B 39 (1983) 189

5. P. Misaelides, A. Godelitsas, F. Link, H. Baummann, Microporous Materials 6 (1996) 37

6. S. Yamamoto, S. Sugiyama, O. Matsuoka, K. Kohmura, T. Honda, Y. Banno, H. Nozoye, J. Phys. Chem. 100 (1996) 18474

7. T. Wüst, J. Stolz, T. Armbruster, American Mineralogist 84 (1999) 1126

8. T. Armbruster, Studies in Surface Science and Catalysis, Elsevir, Amsterdam, 2001, p. 13

9. A. Filippidis, A. Godelitsas, D. Charistos, P. Misaelides, A. Kassoli-Fournaraki, Appl. Clay Sci. 11 (1996) 199

10. D. Ming, J. Dixon, Clays Clay Miner. 36 (1988) 244

11. G. R. Garvey, Powder Diffr. 1 (1986) 114

12. D. Balzar, H. Ledbetter, Software for Comparative Analysis of Diffraction – line Brodening, Advances in X-ray Analysis, Vol. 39, V. Gilfrich et al., Eds., Plenum Press, New York, 1997

13. A. Radosavljevi}-Mihajlovi}, A. Dakovi}, M. Toma{evi}-^anovi}, J. Mining and Metallurgy 38 A (2002) 87

14. A. Arcoya et al., Clay Minerals 29 (1994) 123

15. B. Tomazovi}, T. ^erani}, Zeolites 16 (1996) 301

16. G. Rodriquez-Fuentes, R. A. Ruiz-Salvodor, M. Mir, O. Picazo, G. Quintana, M. Delgado, Microporous and Mesoporous Materials 20 (1998) 269.

J.Serb.Chem.Soc. 69(4)283–298(2004)

UDC 546.863:66.061/.062

JSCS – 3154

Original scientific paper

Selective liquid-liquid extraction of antimony(III) from
hydrochloric acid media by N-n-octylaniline in xylene

B. M. SARGAR, M. M. RAJMANE and M. A. ANUSE

Analytical Chemistry Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, India (e-mail: )

(Received 2 June 2003)

Abstract: N-n-Octylaniline in xylene was used for the extraction separation of antimony(III) from hydrochloric acid media. Antimony(III) was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III) from tellurium(IV), selenium(IV), lead(II), bismuth(III), tin(IV), germanium(IV), copper(II), gold(III), iron(III) and zinc(II). The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

Keywords: antimony(III), N-n-octylaniline, solvent extraction.

REFERENCES

1. C. Juan, N. Cristina, Afinidad 39 (377) (1982) 51

2. A. Alian, W. Sanad, Talanta 14 (1967) 659

3. S. Toshio, O. Hiroyuki, S. Kiyoshi, Anal. Sci. 2 (1986) 25

4. Y. Koichi, S. Takayuki, Anal. Sci. 16 (2000) 641

5. P. Navarro, J. Simpson, F. J. Alguacil, Hydrometallurgy 53 (1999) 121

6. A. D. Barve, G. S. Desai, V. M. Shinde, Bull. Chem. Soc. Jpn. 66 (1993) 1079

7. D. B. Dreisinger, B. J. Y. Leong, B. R. Saito, P. G. West-Shells, Hydrometall. Proc. Milton E. Wadsworth Int. Symp. 4 (1993) 801

8. D. B. Dreisinger, B. J. Y. Leong, I. Grewal, Impurity Control Disposal Hydrometall. Processes, Annu. Hydrometall 24th Meeting, (1994) 71

9. S. Facon, G. Cote, D. Bauer, Solvent Extr. Ion Exch. 9 (1991) 717

10. S. G. Sarkar, P. M. Dhadke, Sep. Purif. Technol. 15 (1999) 131

11. Szymanowski, Jan, Miner. Process. Extr. Metall. Rev. 18 (1998) 389

12. S. V. Bandekar, P. M. Dhadke, Solvent Extraction for the 21st Century, Proceedings of ISEC 99 Barcelona, Spain, July 11–16 (1999) 71

13. S. V. Bandekar, P. M. Dhadke, Indian J. Chem. 39 A (2000) 548

14. K. A. Ali, A. K. Vanjara, Indian J. Chem. Tech. 8 (2001) 239

15. A. P. Mehrotra, M. Rajan, V. M. Shinde, Indian. J. Chem. 35A (1996) 530

16. G. K. Schweitzer, L. E. Storms, Anal. Chim. Acta. 19 (1958) 154

17. S. S. M. A. Khorasani, M. H. Khundkar, Anal. Chim. Acta. 21 (1959) 24

18. T. N. Lokhande, M. A. Anuse, M. B. Chavan, Talanta 46 (1998) 163

19. T. N. Lokhande, M. A. Anuse, M. B. Chavan, Talanta 47 (1998) 823

20. T. N. Lokhande, G. B. Kolekar, M. A. Anuse, M. B. Chavan, Sep. Sci. Technol. 35 (2000) 153

21. T. N. Lokhande, M . A. Anuse, J. Saudi Chem. Soc. 4 (2000) 1

22. J. Bassett, R. C. Denny, G. H. Jeffery, J. Mendham, Vogel’s Text Book of Quantitative Inorganic Analysis, 4th ed., Longman, London, 1979

23. Z. G. Gardlund, R. J. Curtis, G. W. Smith, Liq. Cryst. Ord. Fluids 2 (1973) 541

24. Z. Marczenko, Spectrophotometric Determination of Elements, Wiley, New York, 1976, p.p. 125, 326, 605, 549, 275

25. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley, 1988

26. G. B. Kolekar, T. N. Lokhnde, P. N. Bhosale, M. A. Anuse, Anal. Lett. 31 (1998) 2241

27. M. A. Anuse, S. R. Kuchekar, M. B. Chavan, Indian J. Chem. 25A (1986) 1041

28. A. I. Vogel, Textbook of Quantitative Chemical Analysis, 5th ed., Longman, London, 1997 p. 690

29. G. B. Kolekar, M. A. Anuse, Bull. Chem. Soc. Jpm. 71 (1998) 859

30. G. B. Kolekar, B. M. Sargar, M. A. Anuse, Chem. Environ. Res. 9 (2000) 37

31. E. B. Sandell, Colorimetric Determination of Traces of Metals, 3rd ed., Interscience, New York, 1965, p. 503

32. P. P. Kish, I. S. Baloq, V. A. Andrukh, M. G. Golomb, Zh. Anal. Khim. 45 (1990) 915.

J.Serb.Chem.Soc. 69(4)299–307(2004)

UDC 547.421–036.7+547.458.88+621.78.063

JSCS – 3155

Original scientific paper

Pectinases partitioning in aqueous two-phase systems: an
integration of the systems poly(ethylene glycol)/crude dextran and poly(ethylene glycol)/ammonium sulphate

MIRJANA G. ANTOV DRAGINJA M. PERI^IN and STANA N. PEJIN

Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia and Montenegro (e-mail: )

(Received 4 November 2003)

Abstract: The partitioning of pectinases in the poly(ethylene glucol)4000/ammonium sulpohate system was studied and also its application for enzymes extraction from the top phase of the poly(ethylene glucol)4000/crude dextran system. Almost complete one-sided partition of endo-pectinase and exo-pectinase to the bottom phase of the polymer/salt system was achieved at a tie-line length of 37.16 %. The concentration factors were 1.73 and 3.25, respectively. The highest total endo- and exo-pectinase yields (72.41 % and 69.46 %, respectively) were obtained by integration of the polymer/polymer system at a tie-line of 8.61 % and a high phase volume ratio and the polymer/salt system at a tie-line of 30.23 % and a low phase volume ratio. Integration of the partitioning at a high tie-line length in the polymer/polimer and a low tie-line length in the polymer/salt system resulted in a total concentration factor of 1.5 and a purification of 1.66 fold for exo-pectinase. The addition of phosphate to this integrated system improved the total concentration factor and purification fold of the activity to 1.73 and 2.14, respectively.

Keywords: aqueous two-phase system, partitioning, pectinases.

REFERENCES

1. W. Fogarty, C. Kelly, in Microbial Enzyme and Biotechnology, W. Fogarty Ed., Applied Science Publishers, London, 1983, p. 131

2. S. N. Gummadi, T. Panda, Process Biochem. 38 (2003) 979

3. P-A. Albertsson, Purtition of Cell Particles and Macromolecules, 3rd edition, Wiley, New York, 1986

4. G. M. Zijlstra, C. D. de Gooijer, J. Tramper, Curr. Opin. Biotechnol. 9 (1998) 171

5. J. Perrson, H-O. Johansson, F. Tjerneld, J. Chromatogr. A 864 (1999) 31

6. R. Hatti-Kaul, Mol. Biotechnol. 19 (2001) 269

7. F. Tjerneld, I. Persson, P-A. Albertsson, B. Hahn-Hagerdal, Biotechnol. Bioeng. 27 (1985) 1036

8. A. Venancio, C. Almeida, J. A. Teixeira, J. Chromatogr. B 680 (1996) 131

9. F. Tjerneld, S. Berner, A. Cajarville, G. Johansson, Enzyme Microb. Technol. 8 (1986) 417

10. L. H. M. da Silva, A. J. A. Meirelles, Carbohydr. Polymers 42 (2000) 279

11. Y-T. Wu, M. Pereira, A. Venancio, J. Teixeira, J. Chromatogr. A 929 (2001) 23

12. G. Miller, Anal. Chem. 31 (1959) 426

13. S. Hotha, R. Banik, J. Chem. Tech. Biotechnol. 69 (1997) 5

14. D. Peri~in, S. Kevre{an, L. Banka, M. Antov, M. [krinjar, Biotechnol. Lett. 14 (1992) 127

15. G. Aguilar, C. Huitron, Biotechnol. Lett. 12 (1990) 655

16. T. Furuya, S. Yamada, J. Zhu, Y. Yamaguchi, Y. Iwai, Y. Arai, Fluid Phase Equilib. 125 (1996) 89

17. M. M. Bradford, Anal. Biochem. 72 (1976) 248

18. E. Andersson, A-C. Johansson, B. Hahn-Hagerdal, Enzyme Microb. Technol. 7 (1985) 333

19. B. Skoog, Vox Sang. 37 (1979) 345

20. A. Salabat, Fluid Phase Equilib. 187–188 (2001) 489

21. E. Andersson, B. Hahn-Hagerdal, Enzyme Microb. Technol. 12 (1990) 242