Dearcolleagues!MynameisNN.IwillpresenttheteamofRussiawiththeproblemFirehose.

Theproblemsays:Considerahosewithawaterjetcomingfromitsnozzle.Releasethehoseandobserveitssubsequentmotion.Weareproposedtodeterminetheparametersthataffectthismotion.

Thephenomenonofsocalledgarden-hoseinstabilitywaswidelyinvestigatedbyPaïdoussis et al.Asyoucansee,hisexperimentaldevicewasenoughlarge and complicated.Ourequipmentismuchmoresimple and small.

Let’sbeginwithourfirstobservations.

The hose is straight anddoesnotoscillate whenagardenerholds it nearthenozzle. Let us increasethelengthbetweenthehandfixationandthefreenozzle. Atcertainpositionthesystembecomesunstableandsmallrandomperturbationsgrowintolateraloscillations with significant amplitude.

Hereyoucanseetheoscillatinghose.Itslengthisabout15cm,anditsoscillatoryfrequencyisabout10timespersecond.

Letmeintroduceastandard theoreticalmodelofthisphenomenon.

Themodeltakesintoaccountthreeforces:elasticforce,centrifugalforceandCoriolisforce.Gravityandviscosityareneglected.

Theelasticforcemanifestsitselfwhenthehoseisbent.Tensileand compression stressestrytostraightenthehose,thuscreatingabendingmoment.

Thecentrifugalaccelerationappearswhenthefluidmovesalongthecurvedsegmentofthehose.Itiscalculatedthisway.

TheCoriolisaccelerationappearswhenthefluidmovesalongtherotatedsegmentofthehose.Thefirstsourceofthisaccelerationisthatthesegmentchangesitsdirection,untilthefluidrunsalongit.Thesecondsourceisthatoneendofthesegmentmovesrelativetotheother,whichgivesitsowncontributionintothechangeofthefluidvelocity.

Themovementofthehoseisdescribedbythisequation.WetookitfromPaïdoussis’ book.Infact,thisequationrepresentsNewton’ssecondlawappliedtoasmallsegmentofthehose.Theleftpartisaproductofmassandacceleration.Therightpartisasumofactingforces.

Thehoseinstabilitydevelopsasaresultofinternalfluidmotion.NoticethatonlytwolasttermsinthisequationdependonthefluidvelocityU.TheCoriolisforceisproportionaltothisvelocityandthecentrifugalforceisproportionaltoitssquare.Therefore,forsufficientlysmallfluidvelocitytheCoriolisforcedominates,andthesystemissubjectedtoflow-induceddamping.Forsufficientlylargefluidvelocitythecentrifugalforcebecomesdominant,andthesystemlosesitsstabilityduetoitsaction.

Introducingthedimensionlessparameterstheequationtakesthefollowingform.Noticethatnowthemotionofthehoseisdeterminedbytheonlyparameterβ,whichistheratioofthefluidmasstothefullhosemass.Sothedimensionlesscriticalvelocityandfrequencyarethefunctionsofthisparameterβ.

ThesefunctionswerenumericallycalculatedbyGregoryandPaïdoussis.Theredpointscorrespondtotheparametersofourexperimentalsetup.

Thetheorypredictsthatthecriticalvelocityisinverselyproportionaltothelengthofthehose,andthecriticalfrequencyisinverselyproportionaltothesquareofthislength. We check thesepredictionsinourexperiment.

Inourfirstexperimentthehosewassituatedintheair.

Wesetthecertainflowrate,measureditandcalculatedthejetvelocity.Thenwefoundthecriticallengthofthehose.Finally,wemeasuredtheoscillatoryfrequency.

Therearethemainparametersofthehoseinoursetup. The mass ratio is about 0.22.

Thisgraphshowshowthecriticalvelocitydependsonthehoselength.Theredlinerepresentsthetheoreticalprediction.Theagreementbetweenthetheoryandtheexperimentis reasonable.

Thereareanalogousresultsfortheoscillatoryfrequency.Theagreementisgoodagain.

Inoursecondexperimentthehosewassubmergedinwater.

Wenoticedthatitscriticalfrequencydecreasedsignificantly.

Criticalvelocitiesintheairandinthewaterarenotsignificantlydifferent:thevalueofthisvelocitydeterminedbythebalanceofforces,whichremainsthesame.

Incontrast,theoscillatoryfrequencyunderthewaterisseveraltimeslessthanintheair.Thisisbecausethe inertia of the hoseunderthewater is increasedbytheaddedmassofsurroundingwater.

Theaddedmassappearsbecauseanacceleratingbodymustmovesome connected volumeoffluidasitmovesthroughit.Onecanshowthatacylinderhasanaddedmassequaltothemassoffluidinitsvolume.

Letmesummarizeourresults.

Firstofall,thegarden-hoseinstabilityiscausedbytheinterplayofcentrifugalandCoriolisforcesgeneratedbytheflowofwaterthroughthehose.

Self-sustaininghoseoscillationsappearwithacertaincriticalfluidvelocity.

Theoscillatoryfrequencyofthehosedecreaseswithincreasingofitsmass.Whenthehoseissubmergedinwater,itsmass is virtually increasedbytheaddedmassof surrounding water.

Theseareourreferences.

Thankyouforyourattention!