Electron Configurations

The Bohr model had limitations...the math only worked for 1 electron atoms (basically, only hydrogen). Since it couldn't predict the chemical properties (ionization energy, for example) for anything other than hydrogen, it had to be modified.

Other scientists found discrepancies in the trend in ionization energy. Others found details in the spectra (remember Bohr's model came from element spectra) that weren't explained by Bohr's model.

On top of that, scientists working with light noticed that light acted as both a particle and a wave. A scientists named deBroglie turned that around and suggested that particles could be waves...so maybe an electron can behave as a wave!

Experiments with electrons showed that electrons can exhibit wave like properties (like diffraction).

Erwin Schroedinger came up with an equation to describe an electron as a wave. He won the Nobel prize for this. It's called the Schroedinger Wave Equation.

The equation requires 4 numbers to describe an electron and we call these quantum numbers:

Four quantum numbers:

n, l, ml, ms

n = energy level

l = angular momentum (orbital shape: s, p, d, f)

ml = Magnetic (axis: x, y, z)

ms = spin (up or down arrow)

It's not really important for you to know much about quantum numbers. However, each of the quantum numbers have physical meaning...and that's the part you need to know.

Energy level is pretty straight forward, but now there are sublevels which we call

s

p

d

f

Each sublevel has a certain number of orbitals. An orbital is a 3-d shape that represents where an electron has 90% probability of being found.

(So for those of you paying attention...the other 10 % is the rest of the universe...crazy, huh?)

Energy Level / Number of sublevels / Sublevels: / # of orbitals in that sublevel / Total number of electrons in sublevel
1 / 1 / s / 1 / 2
2 / 2 / s
p / 1
3 / 2
6
3 / 3 / s
p
d / 1
3
5 / 2
6
10
4 / 4 / s
p
d
f / 1
3
5
7 / 2
6
10
14

NOTICE THE PATTERNS!! It will help a lot!

There are 4 kinds of sublevels: s, p, d, f

Here's what they look like:

s orbitals are just spheres:

p orbitals have two lobes and there are 3 different p orbitals (one for each axis: px, py, pz


d orbitals are more complicated, one of them is just odd. 5 different d orbitals:


f orbitals are a lot more complicated. There are seven of them.


Okay, so what do you do with that information? You describe how electrons are arranged in atoms...There are two ways:

Orbital Diagrams and Electron Configurations


Here are some rules for writing orbital diagrams and electron configurations:

Aufbau Principle: An electron occupies the lowest energy orbital that can receive it


Low Energy High Energy

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

5s 5p 5d 5f

6s 6p 6d

7s

Notice the pattern above... if you use slanted arrows, starting with 1s as shown in the next picture, you will get the same order as the yellow highlight.

The following orbital diagram would be wrong, because the 2s is not filled completely. Since 2s is lower in energy, it needs to be filled first.


Pauli Exclusion Principle:

No two electrons in the same atom can have the same set of four quantum numbers

Hund’s Rule

1.  Orbitals of the same energy are occupied by on electron before any orbital is occupied by a second electron

Which means that the following orbital diagram is WRONG:


  1. All electrons in singly occupied orbitals must have the same spin.

Which means that the following orbital diagram is WRONG:


Orbital Diagrams

1.  Determine the number of electrons from the atomic number on the periodic table

2.  Determine the highest energy level

  1. Draw lines for each of the orbitals available to each energy level

4. 
Fill in electrons using up and down arrows according to Aufbau, Hund, and Pauli principles

Electron Configurations

1s22s22p6

1.  Determine the number of electrons using the atomic number from the periodic table

2.  Write the energy level number

3.  Write the orbital number

4.  Write the number of electrons in that orbital as a superscript

  1. Repeat until all electrons have been used

Periodic Trends


Patterns on the periodic table:

1.  s orbitals can hold 2 electrons, all elements in the first 2 families on the PT have electron configurations than end with s1 (group 1) or s2 (group 2)

2.  The p sublevel can hold 6 electrons and there are 6 columns in the purple section that correspond to ending electron configs of p1, p2, p3 and so on.

3.  The d sublevel can hold 10 electrons and there are 10 columns in the green section that correspond to ending electron configurations of d1, d2, d3 and so on.

4.  The f sublevel can hold 14 electrons and there are 14 columns in the green section that correspond to ending electron configurations of f1, f2, f3 and so on.

5.  The energy level is the same as the row/period number

a)  except for d electrons which are one less than the row number

b)  also excpet for f electrons, but this is easy to remember because the first time f electrons show up is in the fourth energy level, so the first row of the f section is 4f and the second row is 5f

6.  Notice that each of the sections generally corresponds to elements that have similar properties

a)  S BLOCK: Alkali metals and alkaline earth: react strongly with water, are metallic and form only one type of ion

b)  P BLOCK: All the non-metals (although, it also includes some metals...there's always exceptions in chemistry!)

c)  D BLOCK: Transition metals: metallic, have multiple oxidation states, often form colored compounds.

d)  F BLOCK: Many are radioactive/unstable

Noble Gas Configurations

These are a shorter version of electron configuration.

1.  Identify the noble gas that comes BEFORE the element you are writing the electron configuration for – EVEN IF IT IS FARTHER AWAY.

2.  Put the noble gas in square brackets

3.  Write the rest of the electron config.

Ne: 1s2 2s2 2p6

Na: 1s2 2s2 2p6 3s1

Notice the similarity of Na and Ne?

Abbreviate Na's electron config: [Ne] 3s1

Electron Configurations for Ions!

Follow the same procedures as previous examples:

Na+ has 10 electrons instead of 11

Write the electron config so that exponents add up to 10

Na: 1s2 2s2 2p6 3s1

Na+: 1s2 2s2 2p6

Notice that the electron configuration for the sodium ion is now the same as Neons. Remember, elements react to become stable, like their nearest noble gas. In Na's case, it's neon.

O2- has 8 electrons instead of 6

O: 1s2 2s2 2p4

O2-: 1s2 2s2 2p6

Extra information: Quantum Numbers

**Quantum numbers are written for electrons.

**It is easiest to write quantum numbers if you have an orbital diagram

1.  Determine the energy level of the electron

a.  Assign 1 for energy level 1, 2 for level 2, etc.

2.  Determine the orbital

Orbital / Angular Momentum
Quantum Number
s / 0
p / 1
d / 2
f / 3

3.  Determine the axis (degenerate orbital) that the electron is on

Orbital / Magnetic Quantum number
s / 0
p / ____
-1 / ____
0 / ____
+1
d / ____
-2 / ____
-1 / ____
0 / ____
+1 / ____
+2

4.  Determine the spin

a.  Up = + ½

  1. Down = - ½