Welded Tanks for Oil StorageP-1
P.3.12 Sample Problem No. 3
This sample problem uses the alternative method on the data presented in the sample problem in P.2.9. The calculated limit loads from in P.2.9 are assumed to be from thermal loads. The stresses are calculated using the equations from Tables P-2 through P-4. Stress factors are calculated by interpolating between t/tn = 2 and 1 to get the stress factor for t/tn = 1.092 at d/tn = 30 , then again at d/tn = 10, and finally by interpolating between d/tn = 30 and 10 to get the stress factor for d/tn = 19.70.
P.3.12.1 Data
Tank diameterD=80 m (260 ft or 3120 in)
Tank shell thicknesst=34 mm (1.33 in)
Nozzle outside diameterd=610 mm (24 in)
Nozzle neck thickness (assumed)tn=31 mm (1.218 in)
Nozzle location from bottomL=630 mm (24.75 in)
Design stressSd=160 MPa (23,200 lbf/in.2)
Using the limit loads from P.2.9.3:
FR =320328,000 N (74800 lbs)
MC =550 106 Nmm (4.95 106 inlbfs)
ML =195 106 Nmm (1.74 106 inlbfs)
MT =VC = VL = 0
P.3.12.2 Solution
P.3.12.2.1 Establish the values for t, u, d/tn, and t/tn from the data provided.
In SI units:
u=(d/D)(D/t)0.5
u=(610/80,000)(80,000/34)0.5
=0.37
d/tn=610/31
=2019.7
t/tn=34/31
=1.096
Use t/tn=1.096
In US Customary units:
u=(d/D)(D/t)0.5
u=(24/3120)(3120/1.33)0.5
=0.37
d/tn=24/1.218
=2019.7
t/tn=1.33/1.218
=1.092
Use t/tn=1.092
P.3.12.2.2 Bending and membrane stress factors for FR, MC and ML are determined by interpolation and
are reported in Table P-7. Values in Table P-7 are shown to four places passed thr decimal point to
help verify computer-generated data.
EDITOR’S NOTE:Please change existing “Table P-7” to be “Table P-8”. Also change reference to “P-7”, that appears in section P.3.11.2.4 , to refer to “P-8”.
Table P-7 --- Stress Factors for Sample No. 3 in U.S. Customary units
value / d/tn / t/tn / Use eqn # / factor / interpolate / interpolatefr for FR / 2 / 17 / 1.6536
& d/tn=30 / 1.092 / 2.1822
1 / 16 / 2.2357
19.70 / 2.1577
fr for FR / 2 / 13 / 1.5854
& d/tn=10 / 1.092 / 2.1347
1 / 12 / 2.1903
ffor FR / 2 / 36 / 1.2118
& d/tn=30 / 1.092 / 0.9966
1 / 35 / 0.9748
19.70 / 0.9384
ffor FR / 2 / 32 / 0.9960
& d/tn=10 / 1.092 / 0.8836
1 / 31 / 0.8722
fr for MC / 2 / 55 / 1.5511
& d/tn=30 / 1.092 / 1.8360
1 / 54 / 1.8648
19.70 / 1.8538
fr for MC / 2 / 51 / 1.5688
& d/tn=10 / 1.092 / 1.8706
1 / 50 / 1.9011
ffor MC / 2 / 74 / 1.1410
& d/tn=30 / 1.092 / 0.7792
1 / 73 / 0.7426
19.70 / 0.8165
ffor MC / 2 / 70 / 1.2371
& d/tn=10 / 1.092 / 0.8516
1 / 69 / 0.8125
fr for ML / 2 / 93 / 1.5006
& d/tn=30 / 1.092 / 1.7320
1 / 92 / 1.7554
19.70 / 1.7305
fr for ML / 2 / 89 / 1.5111
& d/tn=10 / 1.092 / 1.7305
1 / 88 / 1.7527
ffor ML / 2 / 112 / 1.0592
& d/tn=30 / 1.092 / 0.7359
1 / 111 / 0.7031
19.70 / 0.7218
ffor ML / 2 / 108 / 1.0733
& d/tn=10 / 1.092 / 0.7085
1 / 107 / 0.6716
P.3.12.2.2 To calculate the stress factors, interpolation is required between d/t = 10 and 30 to arrive at the values for d/t = 18
FRfT for d/tn= 10 and t/tn = 1 (12)
fr=–0.9384ln(u) + 1.2638
=–0.9384ln(0.37) + 1.2638
=2.197
fT for d/tn= 30 and t/tn = 1 (16)
fr=–0.9074ln(u) + 1.3398
=–0.9074ln(0.37) + 1.3398
=2.242
fT for d/tn= 20 and t/tn = 1
fr=0.5(2.197 + 2.242)
=2.219
FRf for d/tn= 20 and t/tn = 1 (31 and 35)
f=0.5{(–0.3427ln(u) + 0.5338) + (–0.344ln(u) + 0.6352)}
=0.9259
MCfr for d/tn= 20 and t/tn = 1 (50 and 54)
fr= 0.5{(–0.0233u2 – 0.1xu + 1.9416) + (–0.0207u2 – 0.0936xu + 1.9026)}
= 1.883
f= 0.5{(0.0229u2 – 0.1966u + 0.8826) + (0.0048u2 – 0.0649u + 0.7661)}(69 and 73)
=1.322
MLf= 0.5{(0.0769u2 – 0.42u + 0.8174) + (0.0205u2 – 0.2132u + 0.7797)}(107 and 111)
=0.688
fr=0.5{(–0.0359u2 – 0.5507u + 1.9629) + (0.0658u2 – 0.695u + 2.0052)}(88 and 92)
=1.7556
P.3.12.2.3 Calculate the stresses.
In SI units:
Stress due to FR,
r=(FR/t2)fr
r=(328,000/342)2.2192.1577
=629 612 MPa
=(FR/t2)f
=(328,000 0.9259/342 ) x 0.9384
=263 266 MPa
Stress due to MC,
r=(MC/(dxt2)fr
r=(550 106)/(610 342)x1.8831.8538
=1469 1446 MPa
=(MC/(dt2)f
=(550 106)/(610 342)1.3220.8165
=1031 637 MPa
Stress due to ML,
r=(ML/(dt2)fr
r=(195 106)/(610 342)1.75561.7305
=485 479 MPa
=(ML/(dt2)f
=(195 106)/(610 342)0.6880.7218
=190 200 MPa
In US Customary units:
Stress due to FR,
r=(FR/t2)fr
=(74,800/1.332)2.2192.1577
=93,83391,240 lbf/in.2
=(FR/t2)f
=(74,800 0.9259/1.332 0.9384
=39,15339,682 lbf/in.2
Stress due to MC,
r=(MC/(dt2)fr
=(4.95 106)/(24 1.332)1.8831.8538
=199,594216,148 lbf/in.2MPa
=(MC /(dt2)f
=(4.95 106)/(24 1.332)1.3220.8165
=140,12995,198 lbf/in.2
Stress due to ML,
r=(ML/(dt2)xfr
=(1.74 106)/(24 1.332)1.75561.7305
=71,95570,956 lbf/in.2
=(ML/(dt2)f
=(1.74 106)/(24 1.332)0.6880.7218
=28,19829,583 lbf/in.2
P.3.12.2.4 Calculate the stress reduction factors.
In SI units:
B=2(Dt)0.5
B=2(80,000 34)0.5
=3298 mm
h=L/B
h=630/3298
=0.19
In US Customary units:
B=2(Dt)0.5
=2(3120 1.33)0.5
=129 in.
h=L/B
=24.75/129
=0.19
P.3.12.2.5 Calculate the stress intensity.
S = 0.5z[(r + ) ± {(r – )2 + 42}0.5]
Where z = 0.470.46 from Figure P-11, and Smax is from the combination of FR and MC.
In SI units:
SmaxS=z x Smax = 0.46 x 0.5 0.47[(629 + 263 2058+903) ± {(2058-903 629 – 263)2 + 402}0.5]
=296 946 MPa
In US Customary units:
SmaxS=z x Smax = 0.46 x 0.5 0.47[(93833 + 39153307,388+134,880) ± {(307,388-134,880 93833 – 39153)2 + 402}0.5]
=44,102 141,398 lbf/in.2
For this sample problem it is assumed that the limit loads include the liquid load from the tank, therefore the preceding stresses are total stresses. In this case the allowable stress is:
Sall =2.0 SdMechanical Load
=3.02.5SdThermal Load
In this problem it is assumed that the loads are of thermal nature, therefore the allowable stresses are:
In SI units:
Sall =3.02.5 160 MPa
=480 400 MPa
Sall Smax Sall
480 MPa296 946 MPa > 400 MPa
In US Customary units:
Sall =3.02.5x 23,200 lbf/in.2
=69,60058,000 lbf/in.2
Smax Sall SallSmax
69,600141,398 lbf/in.2 44,102 58,000 lbf/in.2
P.3.12.3 Conclusion
Based on the assumptions made, this analysis indicates that the piping arrangement for example P.2.9 is NOT acceptable.
EDITOR’S NOTE:ALL FIGURES ARE UNCHANGED, EXCEPT : IN THE UPPER LEFT CORNER OF FIGURE P-9B, CHANGE “d/tn=3” TO READ “d/tn=30”
FigureP-8A—Stress Factor fR Due to Radial Thrust FR, d/tn = 10FigureP-8B—Stress Factor fR Due to Radial Thrust FR, d/tn = 30
FigureP-8C—Stress Factor fR Due to Radial Thrust FR, d/tn = 50
FigureP-8D—Stress Factor fR Due to Radial Thrust FR, d/tn = 100
FigureP-8E—Stress Factor f Due to Radial Thrust FR, d/tn = 10
FigureP-8F—Stress Factor f Due to Radial Thrust FR, d/tn = 30
FigureP-8G—Stress Factor f Due to Radial Thrust FR, d/tn = 50
FigureP-8H—Stress Factor f Due to Radial Thrust FR, d/tn = 100
FigureP-9A—Stress Factor fr Due to Circumferential Moment MC, d/tn = 10
FigureP-9B—Stress Factor fr Due to Circumferential Moment MC, d/tn = 30
FigureP-9C—Stress Factor fr Due to Circumferential Moment MC, d/tn = 50
FigureP-9D—Stress Factor fr Due to Circumferential Moment MC, d/tn = 100
FigureP-9E—Stress Factor f Due to Circumferential Moment MC, d/tn = 10
FigureP-9F—Stress Factor f Due to Circumferential Moment MC, d/tn = 30
FigureP-9G—Stress Factor f Due to Circumferential Moment MC, d/tn = 50
FigureP-9H—Stress Factor f Due to Circumferential Moment MC, d/tn = 100
FigureP-10A—Stress Factor fr Due to Longitudinal Moment ML, d/tn = 10
FigureP-10B—Stress Factor fr Due to Longitudinal Moment ML, d/tn = 30
FigureP-10C—Stress Factor fr Due to Longitudinal Moment ML, d/tn = 50
FigureP-10D—Stress Factor fr Due to Longitudinal Moment ML, d/tn = 100
FigureP-10E—Stress Factor f Due to Longitudinal Moment ML, d/tn = 10
FigureP-10F—Stress Factor f Due to Longitudinal Moment ML, d/tn = 30
FigureP-10G—Stress Factor f Due to Longitudinal Moment ML, d/tn = 50
FigureP-10H—Stress Factor f Due to Longitudinal Moment ML, d/tn = 100
FigureP-11—Stress Reduction Factor