1

Clark & BaudouinQuality in association studies ESM

Search strategy employed in the electronic search for papers

1.Restriction fragment length polymorphism/ or genetic polymorphism/ or amplified fragment length polymorphism/ or single nucleotide polymorphism/ or polymorphism$.mp. or DNA polymorphism/

2. Genetic association$.mp. or Genetic Association/

3. Single Nucleotide Polymorphism/ or SNP$.mp.

4. Newborn sepsis/ or sepsis.mp. or gram negative sepsis/ or sepsis/

5. Bacterial Infection/ or severe infection$.mp.

6. 1 or 2 or 3

7. 4 or 5

8. 6 and 7

9. Limit 8 to (Human and English language)

Glossary

Allele

One or more alternate forms of a DNA sequence

Genotype

The genetic identity of an individual that does not show as outward characteristics

Hardy-Weinberg equilibrium.

The stable frequency distribution of genotypes, AA, Aa, and aa, in the proportions p2, 2pq, and q2 respectively (where p and q are the frequencies of the alleles, A and a) that is a consequence of random mating in the absence of mutation, migration, natural selection, or random drift. Control groups should be in Hardy-Weinberg equilibrium.

Heterozygous

Two different alleles at a given locus

Homozygous

Two identical alleles at a given locus

ESM Table 1

A table of the 48 assessed case controlled association studies, demonstrating risk of disease or sepsis development, study size, and quality.

Author / Polymorphisms assessed type and total / Control group size / Case group size / Number of patients with Sepsis / Risk of developing sepsis or disease from any single polymorphism. Polymorphism combinations not included. / Effect size / p value / Score
Arnalich[39] / IL-1RN / 130 / 78 / 78 / No effect from polymorphism / NS / 6
Read[40] / IL-1RN, IL-1β / 893 / 1106 / 1106 / No effect from polymorphisms / NS / 6
Fang[20] / IL-1RN, IL-1β,TNF-β / 261 / 93 / 93 / IL1-RN2/2 increase sepsis / RR=2.1 p<0.01 / 5
Ma[41] / IL-1RN, IL-1β,IL-1α / 60 / 60 / 60 / IL1-RN2 allele and homozygous increase risk sepsis / <0.05 / 4
Watanabe[42] / IL-1,IL-6,TNF-α / 150 / 150 / 150 / No effect from polymorphisms on sepsis / NS / 6
Gallagher[9] / IL-6,IL-10,TNF-α / 90 / 93 / 74 / IL-10 G allele increased risk of SIRS
No effects from other polymorphisms / p=0.02 / 2
Schluter[43] / IL-6 / 207 / 326 / 50 / No effect from polymorphisms / NS / 7
Shu[44] / IL-10 / 141 / 116 / 116 / IL-10-1082 allele 1 increase sepsis / OR=1.4 CI=1-3.0 p<0.05 / 4
Schaaf[45] / IL-10,TNF-α,TNF-β / 60 / 69 / 69 / No effect from polymorphisms / NS / 5
Lowe[46] / IL-10 / 132 / 67 / 31 / No effect from polymorphisms / NS / 3
Van der Pol[47] / IL-10,FcγRIIa, FcγRIIIa, FcγRIIIb / 422 / 50 / 50 / No effect from polymorphisms / NS / 6
Westendorp[22] / TNF-α / Not stated / 190 /0 (relatives of meningitis patients) / No effect from polymorphism / NS / 3
Zhang[48] / TNF-α / 116 / 72 / 72 / No effect from polymorphism / NS / 4
Mira [25] / TNF-α 6 poly / 87 / 89 / 89 / TNF-α2 allele increased septic shock / 39% vs 18% / p=0.002 / 5
Nadel[49] / TNF-α / 98 / 98 / No effect from polymorphism / NS / 4
Tang[50] / TNF-α / Not stated / 112/112 / TNF2 allele increased risk sepsis / p<0.01 / 4
Gordon[37] / TNF,TNFRSF / 354 / 213 / No effect from polymorphism / NS / 8
Stuber[24] / TNF-α, TNF-β / 153 / 80 / No effect from this polymorphism / NS / 5
Stuber[51] / TNF-β / 40 / 40 / No effect on sepsis development / NS / 5
Rauchswalbe[52] / TNF-β / Multiple groups / 85/85 / No effect from polymorphism, authors present data but draw no conclusions / NS / 4
Weitkamp[15] / TNF-β / 131+262 / 23 / No effect from polymorphism / NS / 5
Yan[53] / Factor V Lieden / Not stated / 150 / 150 / Factor V heterozygote decreases sepsis / p=0.05 / 7
Kerlin[54] / Factor V Lieden / Not stated / 1690 / 1690 / No effect from polymorphism / NS / 6
Kondaveeti[55] / Factor V Lieden / 80 / 184/184
75/75
79 parents/0 / No effect from polymorphism / NS / 3
Haralambous[56] / 4G/5G PAI / 155 / 510 / 510
210 / 0 (relatives) / No effect from polymorphism / NS / 8
Westendorp[31] / 4G/5G PAI / 131+183 / 50 / 50 / Increase risk septic shock / OR=5.9 CI=1.9-18 / 5
Hermans[57] / 4G/5G PAI / 226 / 175 / 175 / No effect from polymorphism / NS / 2
Menges[58] / 4G/5G PAI / 32 / 61 / 29 / No effect from polymorphism / NS / 4
Hubacek[16] / LBP, BPIP / 250 / 204 / 204 / No effect from polymorphisms / NS / 7
Gibot[27] / CD-14 / 122 / 90 / 90 / T/T genotype and allele increase sepsis / p=0.03 T, p=0.008T/T / 6
Heesen[59] / CD-14 / NS / 58/14 / No effect from polymorphism / NS / 4
Hubacek[30] / CD-14 / 247 / 204 / 204 / No effect from polymorphism / NS / 6
Agnese[23] / CD-14, TLR-4 / 39 / 77 / 38 / TLR4 variant allele increased gram –ve sepsis / p=0.004 / 5
Read[60] / TLR-4 / 879 / 1047 / 1047 / No effect from polymorphism / NS / 6
Lorenz[19] / TLR-2 / 73 / 91 / 91 / Increased incidence of staphylococcal infections? / Not given / 4
Roy[61] / MBL 52,54,57,-221 / 353 First study
679 Confirm study / 229 / 229
108 / 108 / MBL variant homozygote increase invasive pneumococcal disease
MBL variant homozygote increase invasive pneumococcal disease / OR=2.59 CI=1.4-4.4 p=0.002
OR=2.37, CI=1.5-3.7 p=0.0001 / 8
Hibberd[62] / MBL / 272
110 / 194
72 / MBL variant heterozygote and homozygote increase sepsis
MBL variant heterozygote and homozygote increase sepsis / RR=1.7 CI=1.1-2.6 p=0.02
RR=6.5 CI=2-27.2 p=0.0006
RR=2.2 CI=1.1-4.3 p=0.02
RR=4.5 CI=0.9-29.1 p=0.06 / 7
Kronborg[63] / MBL 52,54,57,-221 / 250 / 141 / 141 / No effect of polymorphism / NS / 4
Garred[64] / MBL / 250 / 272 / 197 / MBL variant heterozygote increase sepsis
MBL variant homozygote increase sepsis / RR=1.4 CI=1.1-1.5
RR=1.6 CI=1.4-1.9 / 5
Platonov[65] / Immunoglobulin-γ / 107 / 98 / 98 / No effect from polymorphism / NS / 4
Domingo[66] / Immunoglobulin-γ / 260 / 130 / 130 / FcγRIIA-R/R131increase risk sepsis / RR=3 CI=1.4-7.8 p<0.03 / 6
Yuan[67] / Immunoglobulin-γ / 57+20 / 63 / 63 / FcγRIIA-R/R131 increase risk sepsis in one control group only (N=57) / 50% vs 28% p<0.05 / 4
Yee[68] / Immunoglobulin-γ / 164 / 42 / 42 / FcγRIIA-R/R131 increase risk sepsis / p<0.05 / 6
Saleh[17] / Caspase / 120 / 38 / 38 / 125C allele increases sepsis risk
C/C genotype increases sepsis risk / p=0.002
p=0.005 / 5
Schroeder[69] / HSP, TNF-β / 110 / 87 / 87 / No effect from polymorphism / NS / 4
Harding[70] / ACE / 841 / 113 / 113 / No effect from polymorphism / NS / 6
Kremer Hovinga[32] / TAFI 1040 + 505 / 212 / 50 /50
176 relatives / No effect from polymorphism
TAFI 1040T/T increased risk childs death / NS
5 (19.2%) vs 21 (7.1%) OR=3.1 CI=1.0-9.5 p=0.03 / 5
Spolarics[71] / G6PD / 43 / 44/22 / A- Increased sepsis / 50% vs 6.25% p<0.05 / 4

ESM Table 2.

A table of the 72 assessed cohort association studies demonstrating mortality or sepsis risk, study size and quality

Author / Polymorphisms assessed type and total / Cohort size / Number of Patients in cohort with Sepsis / Mortality or sepsis risk disease from any single polymorphism. Polymorphism combinations not included. / Effect size / p value / Score
Arnalich[39] / IL-1RN / 130 / 78 / IL-1RN2/2 increased risk death / RR=6.47 CI=1-41.5 p=0.04 / 5
Bessler[72] / IL-1RN / 95 / 34 / No effect from polymorphism (sepsis) / NS / 4
Read[40] / IL-1RN, IL-1β / 1106 / 1106 / IL-1β 1allele decreased mortality / OR=2.05 CI=1.1-3.8 p=0.023 / 6
Ma[41] / IL-1RN, IL-1β,IL-1α / 60 / 60 / IL-1αA2/2,IL-1β1/2,IL-1RN2/2 and IL-1β and IL-1RN alleles increases mortality / p<0.01 for all / 3
Fang[20] / IL-1RN, IL-1β,TNF-β / 93 / 93 / TNF-β2 allele increased mortality / RR=3.47, p=0.0001 / 4
Read[21] / IL-1RN, IL-1β,IL-1α,TNFα / 276 / 276 / IL-1β1/1 or 2/2 increase mortality / IL-1β1/1 OR=3.4 CI=1.4-8.3
IL-1β2/2 OR=7.4 CI=2.5-21.5 / 6
Watanabe[42] / IL-1,IL-6,Il-1RN,TNF-α / 150 / 150 / No effect from polymorphisms on sepsis / NS / 5
Schluter[43] / IL-6 / 326 / 50 / Decreased death if IL-6GG / OR=0.11 CI=0.02-0.57) / 6
Gallagher[9] / IL-6,IL-10,TNF-α / 93 / 74 / IL-10 G allele increased mortality
No effects from other polymorphisms / OR=4.3 CI=1.39-13.2 p=0.01 / 2
Treszl[73] / IL-1β,IL-4,IL-6,IL-10,TNF-α / 103 / 33 / No effect from polymorphism sepsis / 3
Barber[74] / IL-1β,IL-6,TNF-α,CD-14,TLR-4 / 159 / 105 sepsis
36 severe sepsis / TLR4 G allele increase sepsis
TNF-α A Allele increase sepsis / TLR 4G OR=6.4 CI=1.8-23.2
TNF-α OR=4.5 CI=1.7-12 / 4
Ahrens[75] / IL-6,CD-14, TLR-4, MBL,NOD2 / 356 / 50 / IL-6 G/G increase sepsis
NOD2-3020insC increase sepsis / IL-6 OR=1.9 CI=1-3.6 p=0.039
Nod2 OR=3.2 CI=1-10.4 p=0.052 / 5
Van der Pol[47] / IL-10,FcγRIIa, FcγRIIIa, FcγRIIIb / 50 / 50 / No effect from polymorphisms / NS / 5
Lowe[46] / IL-10 / 67 / 31 / IL-10 A allele increased mortality / p=0.04 / 3
Shu[44] / IL-10 / 116 / 116 / No effect from polymorphism / NS / 3
Jaber[76] / IL-10,TNF-α / 61 / 39 / Polymorphisms did not alter sepsis risk / NS / 3
Schaaf[45] / IL-10,TNF-α,TNF-β / 69 / 69 / IL-10GG increase risk septic shock / OR=6.1 CI=1.4-27.2 p=0.024 / 5
Stassen[77] / IL-18 / 66 / 36 / No effect from single polymorphismson sepsis / NS / 3
Waterer[78] / TNF-α,TNF-β / 280 / 31 (septic shock) / TNF-β AA genotype increase septic shock
No effect mortality / RR=2.48 CI=1.3-4.8 p=0.01 / 4
Majetschak[79] / TNF-α,TNF-β / 70 / 14 / TNF-β 1/1 or 2/2 increased sepsis / β1/1 OR=13 CI=1.8-95.5 p=0.014
β2/2 OR=11 CI=1.7-66.7 p=0.01 / 3
Calvano[80] / TNF-α,TNF-β / 44 / 24 / No effect from polymorphism / NS / 4
Stuber[24] / TNF-α, TNF-β / 80 / 80 / Improved survival if TNFB1/2 vs 1/1 and 2/2 combined / 22/37 vs 17/43 survived p=0.007 / 4
O’Keefe[28] / TNF-α / 152 / 97 / TNF-α308A allele increases severe sepsis / OR=2.5 CI=1.5-4.3 / 5
Mira[25] / TNF-α / 89 / 89 / TNF-α308A allele increased mortality / 71% vs 42% death rate p=0.008 / 5
Tang[50] / TNF-α / 112 / 112 / TNF-α308AA increased mortality in subset population with septic shock n=42 / 92% vs 62% death rate p<0.05 / 4
Hedberg[81] / TNF-α / 173 / 85 / TNF-α308A allele increases mortality
No effect sepsis risk / 10% vs 3% death rate p=0.038 / 3
Nadel[49] / TNF-α / 98 / 98 / TNF-α308A allele increased mortality / RR=2.5 CI=1.1-5.7 / p=0.03 / 4
Appoloni[82] / TNF-α / 37 / 37 / TNF-β2 genotype increased mortality / OR=12 / p=0.02 / 2
Zhang[48] / TNF-α / 72 / 72 / TNF-α308A allele increased risk severe sepsis / 29 vs 46%, p=0.02 / 4
Westendorp[22] / TNF-α / 190 / 0 (relatives of meningitis patients) / No effect from polymorphism / NS / 4
Gordon[37] / TNF-α, TNFRSF / 213 / 213 / No effect from polymorphisms / NS / 8
Majetschak[83] / TNF-β / 110 / 53 / TNF-β2/2 genotype increases sepsis risk / OR=3.07 CI=1.42-6.63 p=0.004 / 4
Riese[84] / TNF-β / 172 / 18 / TNF-β2/2 genotype increase sepsis risk / p<0.02 / 4
Weitkamp[15] / TNF-β / 23 / 23 / No effect from polymorphism / NS / 4
Flach[18] / TNF-β / 40 / 10 / TNF-β2/2 increase sepsis risk / 90% of sepsis patients β2/2 p=? / 3
Stuber[51] / TNF-β / 40 / 40 / TNF-β2 allele increased mortality / p<0.005 / 5
Kahlke[85] / TNF-β / 160 / 16 / TNF-β2/2 increases sepsis mortality / p<0.05 / 5
Rauchschwalbe[52] / TNF-β / 85 / 85 / No effect from polymorphism / NS / 4
McArthur[86] / TNF-β / 34 / 34 / TNF-β2/2 genotype increased mortality / P<0.001 / 4
Schroder[87] / TNF-β / 201 / 201 / TNF-β2/2 genotype increased mortality / P<0.05 / 4
Yan[53] / Factor V Lieden / Not stated / 150 / 150 / VL +/- decrease mortality / RR=0.5 CI=0.27-0.92 / 7
Kerlin[54] / Factor V Lieden / 1690 / 1690 / VL +/- decrease mortality / OR survival 2.8 CI=1.3-5.8 p=0.006 / 6
Kondaveeti[55] / Factor V Lieden / 184
75
79parent / 184
75
0 / Increased purpura fulminans if VL+/- / 5/24 vs 14/209 p<0.03 / 3
Davis[88] / Interferon-γ D6S471 / 38 / 24 / AA genotype increased major infections / p=0.004 / 4
Stassen[89] / Interferon-γ / 61 / 30 / D allele increase sepsis risk / RR=2.09 CI=1.02-4.3 p=0.06 / 4
Haralambous[56] / 4G/5G PAI / 510 / 510 / 4G/4G increased mortality / RR=1.9 CI=1.2-3.0 p=0.005 / 8
Hermans[57] / 4G/5G PAI / 175 / 175 / 4G/4G increased mortality / RR=2 CI=1-3.8 / 2
Westendorp[31] / 4G/5G PAI / 50 / 50 / No effect on mortality / NS / 5
Hubacek[16] / LBP, BPIP / 204 / 204 / No effect from polymorphisms / NS / 6
Barber[29] / LBP / 151 / 96 / No effect from polymorphism on sepsis / NS / 6
Gibot[27] / CD-14 / 90 / 90 / T allele or T/T increase mortality / RR=5.3 CI=1.2-22.5 p=0.02 T/T / 5
Hubacek[30] / CD-14 / 204 / 204 / No effect from polymorphism / NS / 5
Sutherland[90] / CD-14, MBL, TLR2 / 252 / 252 (SIRS) / TLR-2 T16933AA genotype risk sepsis / RR=1.2 p<0.03 / 5
Heesen[59] / CD-14 / 58 / 14 / No effect from polymorphism / NS / 4
Agnese[23] / CD-14, TLR-4 / 77 / 38 / No effect from polymorphism / NS / 5
Lorenz[26] / TLR-4 / 91 / 91 / No effect on mortality / NS / 5
Read[60] / TLR-4 / 1047 / 1047 / No effect from polymorphism / NS / 6
Lorenz[19] / TLR-2 / 91 / 91 / Increased incidence of staphylococcal infections? / Not given / 4
Fidler[91] / MBL 52,54,57,X/Y / 100 / 59 / MBL variant increased sepsis / shock risk / p=0.0007 / 5
Garred[64] / MBL / 272 / 197 / MBL variant homozygotes increase risk death / RR=2.3 CI=1.2-4.5 / 5
Roy[61] / MBL 52,54,57,-221 / 229 First study
108 Confirm study / 229 invasive pneumococcus
108 invasive pneumococcus / No effect from polymorphism on mortality / NS / 7
Hibberd[62] / MBL / 194 / 194 / No increase mortality / NS / 6
Neth[92] / MBL / 100 / 90 / Increased febrile neutropenic episodes / 20.5 vs 10 days p=0.004 / 5
Kronborg[63] / MBL / 141 / 141 / No effect on mortality / NS / 4
Domingo[66] / Immunoglobulin-γ / 130 / 130 / No effect mortality / NS / 5
Platonov[65] / Immunoglobulin-γ / 98 / 98 / No mortality effect from polymorphism
Increased severity meningitis if FcγRIIaR+ / NS
P=0.02 OR=4.7 / 3
Saleh[17] / Caspase / 38 / 38 / T125C allele increases mortality / Not stated / 4
Schroeder[69] / HSP, TNF-β / 87 / 87 / TNFβ2/2 increased mortality risk / P<0.01 / 3
Waterer[93] / HSP, TNF-β / 343 / 30 septic shock / No effect on mortality (septic shock)
Incresed risk septic shock HSP70-2AA / NS
P=0.005 / 5
Harding[70] / ACE / 113 / 113 / Increased risk death in PICU patients if DD / P=0.013 / 5
Baier[94] / ACE / 295 / >145 but <150 / No effect from polymorphism / NS / 4
Kremer Hovinga[32] / TAFI 1040 + 505 / 50 / 50 / No effect from polymorphism / NS / 4

ESM additional Figure 1

The average score of genetic association studies in sepsis, expressed as a percentage of total possible scores from 0 to 1, with one standard error of the mean. Studies were divided into year of publication. There was no evidence of a trend towards improvement over time.

Complete References

1.Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727-732

2.Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32:569-579

3.Brookes AJ (1999) The essence of SNPs. Gene 234:177-186

4.Tracey KJ, Warren HS (2004) Human genetics: an inflammatory issue. Nature 429:35-37

5.(1999) Freely associating. Nat Genet 22:1-2

6.Bogardus ST, Jr., Concato J, Feinstein AR (1999) Clinical epidemiological quality in molecular genetic research: the need for methodological standards. Jama 281:1919-1926

7.Romero R, Kuivaniemi H, Tromp G, Olson J (2002) The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 187:1299-1312

8.Cooper DN, Nussbaum RL, Krawczak M (2002) Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 110:207-208

9.Gallagher PM, Lowe G, Fitzgerald T, Bella A, Greene CM, McElvaney NG, O'Neill SJ (2003) Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 58:154-156

10.Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644-1655

11.Gordon D, Levenstien MA, Finch SJ, Ott J (2003) Errors and linkage disequilibrium interact multiplicatively when computing sample sizes for genetic case-control association studies. Pac Symp Biocomput:490-501

12.Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22-33

13.Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434-442

14.Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253-1261

15.Weitkamp JH, Stuber F, Bartmann P (2000) Pilot study assessing TNF gene polymorphism as a prognostic marker for disease progression in neonates with sepsis. Infection 28:92-96

16.Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Ritter M, Rothe G, Schmitz G (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557-561

17.Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75-79

18.Flach R, Majetschak M, Heukamp T, Jennissen V, Flohe S, Borgermann J, Obertacke U, Schade FU (1999) Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine 11:173-178

19.Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398-6401

20.Fang XM, Schroder S, Hoeft A, Stuber F (1999) Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 27:1330-1334

21.Read RC, Camp NJ, di Giovine FS, Borrow R, Kaczmarski EB, Chaudhary AG, Fox AJ, Duff GW (2000) An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect Dis 182:1557-1560

22.Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, Vandenbroucke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349:170-173

23.Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522-1525

24.Stuber F (1996) -308 Tumour Necrosis Factor (TNF) Polymorphism Is Not Associated With Survival in Severe Sepsis and Is Unrelated to Lipopolysaccharide Inducibility of the Human TNF Promoter. Journal of Inflammation 46:42-50

25.Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, Cheval C, Monchi M, Teboul JL, Riche F, Leleu G, Arbibe L, Mignon A, Delpech M, Dhainaut JF (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. Jama 282:561-568

26.Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028-1032

27.Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L (2002) Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30:969-973

28.O'Keefe GE, Hybki DL, Munford RS (2002) The G-->A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 52:817-825; discussion 825-816

29.Barber RC, O'Keefe GE (2003) Characterization of a single nucleotide polymorphism in the lipopolysaccharide binding protein and its association with sepsis. Am J Respir Crit Care Med 167:1316-1320

30.Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Rothe G, Schmitz G (2000) The common functional C(-159)T polymorphism within the promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immun 1:405-407

31.Westendorp RG, Hottenga JJ, Slagboom PE (1999) Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 354:561-563

32.Kremer Hovinga JA, Franco RF, Zago MA, Ten Cate H, Westendorp RG, Reitsma PH (2004) A functional single nucleotide polymorphism in the thrombin-activatable fibrinolysis inhibitor (TAFI) gene associates with outcome of meningococcal disease. J Thromb Haemost 2:54-57

33.Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306-309

34.Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45-61

35.Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91-99

36.Buckland PR (2001) Genetic association studies of alcoholism--problems with the candidate gene approach. Alcohol Alcohol 36:99-103

37.Gordon AC, Lagan AL, Aganna E, Cheung L, Peters CJ, McDermott MF, Millo JL, Welsh KI, Holloway P, Hitman GA, Piper RD, Garrard CS, Hinds CJ (2004) TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 5:631-640

38.Peters DL, Barber RC, Flood EM, Garner HR, O'Keefe GE (2003) Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor -308 G-->A single nucleotide polymorphism and bacterial sepsis: implications for studies of complex traits. Crit Care Med 31:1691-1696

39.Arnalich F, Lopez-Maderuelo D, Codoceo R, Lopez J, Solis-Garrido LM, Capiscol C, Fernandez-Capitan C, Madero R, Montiel C (2002) Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol 127:331-336

40.Read RC, Cannings C, Naylor SC, Timms JM, Maheswaran R, Borrow R, Kaczmarski EB, Duff GW (2003) Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med 138:534-541

41.Ma P, Chen D, Pan J, Du B (2002) Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med 30:1046-1050

42.Watanabe E, Hirasawa H, Oda S, Matsuda K, Hatano M, Tokuhisa T (2005) Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit Care Med 33:89-97; discussion 242-243

43.Schluter B, Raufhake C, Erren M, Schotte H, Kipp F, Rust S, Van Aken H, Assmann G, Berendes E (2002) Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med 30:32-37

44.Shu Q, Fang X, Chen Q, Stuber F (2003) IL-10 polymorphism is associated with increased incidence of severe sepsis. Chin Med J (Engl) 116:1756-1759

45.Schaaf BM, Boehmke F, Esnaashari H, Seitzer U, Kothe H, Maass M, Zabel P, Dalhoff K (2003) Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med 168:476-480

46.Lowe PR, Galley HF, Abdel-Fattah A, Webster NR (2003) Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 31:34-38

47.van der Pol WL, Huizinga TW, Vidarsson G, van der Linden MW, Jansen MD, Keijsers V, de Straat FG, Westerdaal NA, de Winkel JG, Westendorp RG (2001) Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 184:1548-1555

48.Zhang D, Li J, Jiang Z, Yu B, Tang X, Li W (2003) The relationship between tumor necrosis factor-alpha gene polymorphisms and acute severe pancreatitis. Chin Med J (Engl) 116:1779-1781

49.Nadel S, Newport MJ, Booy R, Levin M (1996) Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J Infect Dis 174:878-880

50.Tang GJ, Huang SL, Yien HW, Chen WS, Chi CW, Wu CW, Lui WY, Chiu JH, Lee TY (2000) Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 28:2733-2736

51.Stuber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24:381-384

52.Rauchschwalbe SK, Maseizik T, Mittelkotter U, Schluter B, Patzig C, Thiede A, Reith HB (2004) Effect of the LT-alpha (+250 G/A) polymorphism on markers of inflammation and clinical outcome in critically ill patients. J Trauma 56:815-822

53.Yan SB, Nelson DR (2004) Effect of factor V Leiden polymorphism in severe sepsis and on treatment with recombinant human activated protein C. Crit Care Med 32:S239-246

54.Kerlin BA, Yan SB, Isermann BH, Brandt JT, Sood R, Basson BR, Joyce DE, Weiler H, Dhainaut JF (2003) Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102:3085-3092

55.Kondaveeti S, Hibberd ML, Booy R, Nadel S, Levin M (1999) Effect of the Factor V Leiden mutation on the severity of meningococcal disease. Pediatr Infect Dis J 18:893-896

56.Haralambous E, Hibberd ML, Hermans PW, Ninis N, Nadel S, Levin M (2003) Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 31:2788-2793

57.Hermans PW, Hibberd ML, Booy R, Daramola O, Hazelzet JA, de Groot R, Levin M (1999) 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354:556-560

58.Menges T, Hermans PW, Little SG, Langefeld T, Boning O, Engel J, Sluijter M, de Groot R, Hempelmann G (2001) Plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 357:1096-1097

59.Heesen M, Bloemeke B, Schade U, Obertacke U, Majetschak M (2002) The -260 C-->T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 28:1161-1163

60.Read RC, Pullin J, Gregory S, Borrow R, Kaczmarski EB, di Giovine FS, Dower SK, Cannings C, Wilson AG (2001) A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis 184:640-642