Radical, Log and Exponent Inequalities - Problems

1. (i) Graph y1 = and y2 = x (ii) Solve: < x

2. Solve:

3. Solve:

4. Solve:

5. Solve: (Hint: y = ax (a > 1) is an increasing function)

6. Solve: log4(x + 7) > log2(x + 1)

7. Solve:

8. Solve:

9. Prove: If p ≥ 1, then 5p2 − 1 ≥ 4p

10.

11. 12. logx(x + 6) > 2logxx

13. Graph x2 − 3xy + 2y2 < 0 14. Graph

15. Graph (x − y2)(x − 4y2) > 0 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. x < x2 − 12 < 4x 28.

29.


Radical, Log and Exponent Inequalities – Solutions

1. (i) graph

2. breaks down into two cases:

(i) or (ii)

The plan is to 'exponentiate' both sides (keeping in mind 'log base 3' is increasing).

or

Check out the graph of y = | log3|x| |

y = 1

3.

Case (i) 7 − x > 0 (x < 7) Case (ii) x ≥ 7

Here we can square both sides Here, 7 − x ≥ 0, so the statement is always true.

x + 5 > 49 − 14x + x2

0 > x2 − 15x + 44 Hence x ≥ 7 are all solutions.

0 > (x − 11)(x − 4)

4 < x < 11 and x < 7 gives…

solutions: 4 < x < 7

Taking the union of (i) and (ii) we get:

4. − 1 ≤ x ≤ 3

5. Now we'll note y = 2x is an increasing function…

Now case (i) x + 1 > 0 ( x > −1)

−2x2 − 2x > 2x (no inequality-sign switch!)

−2x2 − 4x > 0 2x2 + 4x < 0 2x(x + 2) < 0

−2 < x < 0 but recall x > −1 so…

[Note: x + 1 0] The intersection gives us: − 1 < x < 0

case (ii) x + 1 < 0 ( x < −1)

Just switch the inequality sign to get 2x(x + 2) > 0

From (i) and (ii) x > 0 or x < −2 combined with x < −1

gives us: x < −2


Radical, Log and Exponent Inequalities – Solutions

6. log4(x + 7) > log2(x + 1)

Now before squaring both sides… case (i) x + 1 > 0 (x > −1)

x + 7 > x2 + 2x + 1 0 > x2 + x − 6

0 > (x + 3)(x − 2) gives…

−3 < x < 2 and recall x > −1

Taking the intersection we get: −1 < x < 2

Before getting to case (ii) x + 1 ≤ 0 , note the restrictions on the arguments for log functions, viz., x + 1 > 0 and x + 7 > 0, hence case (ii) has no solutions. We're done.

7. x2 + 1 < 2 (sign switch!)

Since 'log base ½ ' is a decreasing function: y1 > y2 iff x1 < x2 , hence the sign switch!

Continuing: x2 − 1 < 0 iff (x−1)(x+1) < 0 iff −1 < x < 1

8. Restrictions: x + 1 > 0 and because '1+x' is

case (i) increasing (1+x > 1) also a 'base', it can't be zero or one, so

which is to say: x > 0, then we have also we have 2 − x > 0 ( x < 2)

2 − x < 1 + x

1 < 2x case (ii) 0 < 1 + x < 1 (decreasing function)

x > ½ and x < 2 (restriction) or −1 < x < 0 and switch the '<' sign to get:

½ < x < 2 x < ½ and −1 < x < 0 intersecting…

(i) and (ii) give: − 1 < x < 0

9. p2 − 4p − 1 ≥ 0 (5p + 1)(p − 1) ≥ 0 x ≤ −1/5 or x ≥ 1

Hence if p ≥ 1, then 5p2 − 1 ≥ 4p (Notice the converse is not true.)

10. Multiply both sides by x2 > 0 (x) to get:

x4 − 1 > x3 − x x4 − x3 + x − 1 > 0 x3(x − 1) + (x − 1) > 0

(x3 + 1)(x − 1) > 0 Now use our number line trick to get: x < −1 or x > 1

11. 1 < x < 3

12. logx(x + 6) > 2logxx Restrictions: x > 0, x and x + 6 > 0 (x > −6)

Case (i) logx increasing iff x > 1 , so x + 6 > x2 0 > x2 − x − 6 = (x + 2)(x − 3)

−2 < x < 3 and x > 1 give us: 1 < x < 3

Case (ii) logx decreasing iff 0 < x < 1 and then (switching the inequality sign)…

x > 3 or x < −2 and 0 < x < 1 give us: empty set!

13. Factor x2 − 3xy + 2y2 < 0 to get:

(x − y)(x − 2y) < 0

Case (i) x − y > 0 and x − 2y <0

y < x and y > ½ x (1st Quadrant)

Case (ii) x − y <0 and x − 2y >0

y > x and y < ½ x (3rd Quadrant)


Radical, Log and Exponent Inequalities – Solutions

14. (Inner radius 1, outer radius 2)

15. (x − y2)(x − 4y2) > 0

Case (i) + + y2 < x and 4y2 < x Shade left of both sideways parabolas (see above) and

take the intersection.

Case (ii) − − y2 > 0 and 4y2 > x Shade right of both parabolas (narrow area above).

16. = Restrictions: x > 1

'log base 3/10' is a decreasing function, hence: x − 1 >

Squaring both sides x2 − 2x + 1 > x − 1

(x − 2)(x − 1) = x2 − 3x + 2 > 0

Number line… x > 2 or x < 1 but recall x > 1 , so…

x > 2

17. Let's get the variable on top.

18. | x | ≤1/2 ,

19.

20. Hence, −9/2 ≤ x < −3

21.

getting rid of the '−' sign…

22.

23. | 5 − 3x | ≤ 20 or squaring 25 − 30x + 9x2 ≤ 400

−20 ≤ 5 − 3x ≤ 20 9x2 − 30x − 375 ≤ 0

−25 ≤ −3x ≤ 15 (9x − 75)(x + 5) ≤ 0

−15 ≤ 3x ≤ 25 −5 ≤ x ≤ 25/3

−5 ≤x ≤ 25/3


Radical, Log and Exponent Inequalities – Solutions

24. Squaring both sides: x2 + 10x + 25 < x2 −2x + 1

12x + 24 < 0 iff x < −2

25. Square both sides, then clear of fractions by multiplying by x2.

25 − 10/x + 1/x2 < 1

25x2 − 10x + 1 < x2 iff 24x2 − 10x + 1 < 0 iff (6x − 1)(4x − 1) < 0

1/6 < x < ¼

26. Square both sides.

x4 − 4x2 + 4 ≤ 1 iff x4 − 4x2 + 3 = (x2 − 3)(x2 − 1) ≤ 0

iff iff

27. x < x2 − 12 and x2 − 12 < 4x

0 < x2 − x − 12 x2 − 4x − 12 < 0

0 < (x + 3)(x − 4) (x + 2)(x − 6) < 0

x < −3 or x > 4 −2 < x < 6

Intersecting these two cases, we get: 4 < x < 6

28.

x2 − 4x + 4 < 4(x2 + 6x + 9) Careful not to forget to square the '2' also.

0 < 3x2 + 28x + 32 = (3x + 4)(x + 8)

x < −8 , x > −4/3

29.

Case (i) x ≥ 0 Case (ii) x < 0

(since x < 0, 2x − 1 < 0 also)

(Now let u = 2x )

x ≥ 0 and gives 1 + 2u(u) − 2u ≤ 0 (Clearing of fractions)

But 2u2 − 2u + 1 is never zero (always positive)

since is not defined.

Only the first case yields: No solutions in this case.