Supplementary Material for “Key to opening kidney for in vitro-in vivo extrapolation entrance in health and disease: Part II Mechanistic models and in vitro-in vivo extrapolation”

Contents

1. Table S-I 2

2. References figure 1 in main text 3

3. References 4

1

1.  Table S-I

Table S-I. Calculation of AUC ratio for renal transporter mediated DDIs using static model, and comparison with published predictions using PBPK model and observed values

PBPK Study / Posada et al, 2015 (1) / Hsu et al, 2014 (2) / Hsu et al, 2014 (2) / Hsu et al, 2014 (2) / Li et al, 2014 (3)
Victim Drug / Pemetrexed / Oseltamavir carboxylate / Cidofivir / Cefuroxime / Veliparib
CL (L/h) / 5.6 (4) / 19 (2) / 12.8 (2) / 11 (2) / 34.0 *
fe a / 0.8 (4) / 1 * / 0.89 * / 1 * / 0.7 (5)
CLR (L/ h) a / 4.48 * / 19 (2) / 11.4 (2) / 11 (2) / 23.8 (5)
fu,p,victim / 0.19 (4) / 0.97 (2) / 0.9 (2) / 0.67 (2) / 0.49 (5)
CLR,filt (L/ h) b / 1.4 / 7.0 / 6.5 / 4.8 / 3.5
CLRsec (L/ h) b / 3.1 / 12.0 / 4.9 / 6.2 / 20.3
Perpetrator drug
(transporter) / Ibuprofen
(OAT3) / Probenecid
(OAT3) / Probenecid
(OAT3) / Probenecid
(OAT3) / Cimetidine
(OCT2)
Inhibitor Cmax (µM) / - / 280.7 (6) / 520.7 (7) e / 243.7 (7) / 9.4 (8)
fu,p, inhibitor / - / 0.1 (2) / 0.1 (2) / 0.1 (2) / 0.81 (9)
Inhibitor Cmax,u (µM) / 1.6 (4) / 28.1 f / 52.1 f / 24.4 f / 7.6 f
Ki (µM) / 2.1 (4) / 0.1 – 100 (2) g / 0.1 – 100 (2) g / 0.1 – 100 (2) g / 0.25 – 373 (3, 10) h
DDI index c / 0.74 / 0.3 - 281 / 0.5 – 521 / 0.2 - 244 / 0.02 - 30.3
AUC Ratio
Static (11) / 1.3 / 1.2 – 2.7 / 1.2 - 1.6 / 1.1 - 2.3 / 1.0 - 2.4
PBPK d / 1.2 / 1.2 – 2.3 / 1.1 – 1.4 / 1.2 – 2.2 / 1.3
Observed / 1.2 (4) / 2.5 (2) / 1.3 (2) / 1.4 (2) / ND

a Data for plasma or IV clearance (CL), renal clearance (CLR) or fraction of drug recovered unchanged in urine (fe)were collated where available. Where data not available, values were calculated assuming fe = CLR/ CL, indicated by *; b Filtration clearance (CLR,filt) calculated assuming glomerular filtration rate of 7.2 L/ h. Secretion clearance (CLR,sec) calculated assuming negligible reabsorption (CLR,sec = CLR – CLR,filt); c DDI index is calculated as Cmax,u/ Ki; d data extracted from figures using GetData graph digitiser where necessary (http://www.getdata-graph-digitizer.com/); e Cmax of probenecid after 2 g SD; f Inhibitor Cmax,u calculated using reported Cmax and fu,p; g Range of Ki values represents sensitivity analysis performed in PBPK study (2). In vitro Ki values range from 1.3 – 32 µM (2, 10); h OCT2 Ki of cimetidine SimCYP default compound file is 0.25 µM, which was obtained by fitting to recover clinically observed transporter mediated DDIs. Reported cimetidine IC50 values for OCT2 range from 110 – 373 µM (10); ND - Clinical DDI study not reported

1

2.  References figure 1 in main text

2.1  References for Figure 1

(12-30).

1

3.  References

1. Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325-34.

2. Hsu V, de LT Vieira M, Zhao P, Zhang L, Zheng JH, Nordmark A, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet. 2014;53(3):283-93.

3. Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease–, gene–, and drug–drug interactions: Impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20(15):3931-44.

4. Sweeney CJ, Takimoto CH, Latz JE, Baker SD, Murry DJ, Krull JH, et al. Two drug interaction studies evaluating the pharmacokinetics and toxicity of pemetrexed when coadministered with aspirin or ibuprofen in patients with advanced cancer. Clin Cancer Res. 2006;12(2):536-42.

5. Kikuchi R, Lao Y, Bow DA, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug–drug interactions of veliparib (abt‐888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102(12):4426-32.

6. Holodniy M, Penzak SR, Straight TM, Davey RT, Lee KK, Goetz MB, et al. Pharmacokinetics and tolerability of oseltamivir combined with probenecid. Antimicrob Agents Chemother. 2008;52(9):3013-21.

7. Selen A, Amidon G, Welling P. Pharmacokinetics of probenecid following oral doses to human volunteers. J Pharm Sci. 1982;71(11):1238-42.

8. Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23(5):545-51.

9. Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: Comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos. 2007;35(4):660-6.

10. Morrissey K, Wen C, Johns S, Zhang L, Huang S, Giacomini K. The UCSF-FDA transportal: A public drug transporter database. Clin Pharmacol Ther. 2012;92(5):545-6.

11. Feng B, Hurst S, Lu Y, Varma MV, Rotter CJ, El-Kattan A, et al. Quantitative prediction of renal transporter-mediated clinical drug–drug interactions. Mol Pharm. 2013;10(11):4207-15.

12. Litterst CL, Mimnaugh EG, Reagan RL, Gram TE. Comparison of in vitro drug-metabolism by lung, liver, and kidney of several common laboratory species. Drug Metab Dispos. 1975;3(4):259-65.

13. Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: Comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825-35.

14. Knights KM, Winner LK, Elliot DJ, Bowalgaha K, Miners JO. Aldosterone glucuronidation by human liver and kidney microsomes and recombinant UDP-glucuronosyltransferases: Inhibition by NSAIDs. Br J Clin Pharmacol. 2009;68(3):402-12.

15. Al-Jahdari WS, Yamamoto K, Hiraoka H, Nakamura K, Goto F, Horiuchi R. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur J Clin Pharmacol. 2006;62(7):527-33.

16. Soars MG, Burchell B, Riley RJ. In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J Pharmacol Exp Ther. 2002;301(1):382-90.

17. Orellana M, Araya J, Guajardo V, Rodrigo R. Modulation of cytochrome P450 activity in the kidney of rats following long-term red wine exposure. Comp Biochem Physiol, C: Toxicol Pharmacol. 2002;132(3):399-405.

18. Pacifici GM, Franchi M, Bencini C, Repetti F, Dilascio N, Muraro GB. Tissue distribution of drug-metabolizing-enzymes in humans. Xenobiotica. 1988;18(7):849-56.

19. Aitio A, Vainio H. UDP glucuronosyltransferase and mixed function oxidase activity in microsomes prepared by differential centrifugation and calcium aggregation. Acta Pharmacol Toxicol (Copenh). 1976;39(5):555-61.

20. Jakobsson SV. Subfractionation and properties of rat-kidney cortex microsomal fraction. Exp Cell Res. 1974;84(1-2):319-34.

21. Jakobsson SV, Cinti DL. Studies on cytochrome P-450-containing mono-oxygenase system in human kidney-cortex microsomes. J Pharmacol Exp Ther. 1973;185(2):226-34.

22. Pike MG, Mays DC, Macomber DW, Lipsky JJ. Metabolism of a disulfiram metabolite, s-methyl n,n-diethyldithiocarbamate by flavin monooxygenase in human renal microsomes. Drug Metab Dispos. 2001;29(2):127-32.

23. Bowalgaha K, Miners JO. The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Br J Clin Pharmacol. 2001;52(5):605-9.

24. Sausen PJ, Elfarra AA. Cysteine conjugate s-oxidase - characterization of a novel enzymatic-activity in rat hepatic and renal microsomes. J Biol Chem. 1990;265(11):6139-45.

25. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283(1):46-58.

26. Nishimuta H, Houston JB, Galetin A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: Implications for in vitro–in vivo extrapolation of clearance of prodrugs. Drug Metab Dispos. 2014;42(9):1522-31.

27. Gill KL, Gertz M, Houston JB, Galetin A. Application of a physiologically based pharmacokinetic model to assess propofol hepatic and renal glucuronidation in isolation: Utility of in vitro and in vivo data. Drug Metab Dispos. 2013;41(4):744-53.

28. Gibson CR, Lu P, Maciolek C, Wudarski C, Barter Z, Rowland-Yeo K, et al. Using human recombinant UDP-glucuronosyltransferase isoforms and a relative activity factor approach to model total body clearance of laropiprant (MK-0524) in humans. Xenobiotica. 2013;43(12):1027-36.

29. Du J, You T, Chen X, Zhong D. Stereoselective glucuronidation of ornidazole in humans: Predominant contribution of UDP-glucuronosyltransferases 1A9 and 2B7. Drug Metab Dispos. 2013;41(7):1306-18.

30. Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC, Miners JO. Scaling factors for the in vitro-in vivo extrapolation (IV-ive) of renal drug and xenobiotic glucuronidation clearance. Br J Clin Pharmacol. 2016:DOI: 10.1111/bcp.12889.

1