ADVANCED BIOMECHANICS OF PHYSICAL ACTIVITY

Laboratory Experiments: Measurement and Interpretation of Muscle Force Vectors, Moments, and Power for Knee Flexion

Dr. Eugene W. Brown

Department of Kinesiology

MichiganStateUniversity

Purpose:

This laboratory experiment has several purposes:

1.introduce students to the concepts of biomechanical models in solving

problems,

2.introduce procedures for the calibration of research instrumentation,

3.demonstrate relationships between external and internal measures of force and

torque,

4.review relationships between muscle length and its ability to exert force,

5.demonstrate changes in the mechanical advantage of muscle with changes in

the angle of the joint it crosses,

6.demonstrate the relationships between muscular power and joint angular

velocity,

7.demonstrate the resolution of the force of muscle contraction into a joint

compressive and joint turning component,

8.show the dynamic interaction between the mechanical advantage of muscle

contraction-joint angle and the force-length relationship of muscle,

9.explain how to make appropriate assumptions in constructing biomechanical

models, and

10.reveal how small changes in measurements associated with internal models

may influence large changes on the interpretation of biomechanical

parameters.

List of Equipment and Supplies:

1.APAS system and software for recording and displaying the histories of

torque and joint angle

2.isokinetic dynamometer with attachments for knee flexion torque and

the ability to set various constant angular velocities

3.subject without orthopedic problems in the knee joint

4.anthropometric tools: tape measure, bow caliper, and anthropometer

5.anatomical charts showing the bony structures and the origins and insertions

of muscles of the lower extremity

6.9V batteries

7.weight scale

8.known weights for loading the isokinetic dynamometer

9.level

10.mechanical goniometer

11.athletic tape

12.

1.Some Assumptions

a.The knee joint is a hinge joint.

b.The knee joint is frictionless and pinned.

c.A two dimensional model does not substantially alter the biomechanical

parameters calculated for this three dimensional system.

d.The subject actually provides maximum knee flexion force for the

isometric and isokinetic contractions at specified angles and throughout

the range of movement.

e.The weight of the mechanical arm of the isokinetic dynamometer does

not substantially alter the results.

f.Neglecting the moment of the mechanical arm of the isokinetic

dynamometer does not substantially alter the biomechanical parameters

calculated for this three dimensional system.

2.Measurements - Using the figure of the Hypothetical Model of the lower

extremity, accurately make the following measurements:

a.distance from the knee joint center (A) to the center of the isokinetic

dynamometer cuff (C); (AC) = ______meters

b.horizontal distance from the knee joint center (A) to a point (B) located

directly above the collective origin (O) of the hamstring muscles (ischeal

tuberosity); AB = ______meters

c.perpendicular distance from the origin (O) of the hamstring muscles

(ischeal tuberosity) to the horizontal line representing the femur when

the subject(s) assumes a standard seated position; OB = ______meters

d.estimated distance from the collective insertion (I) of the hamstring

muscles to the center of the knee joint (A); AI = ______meters

General Methods and Procedures:

There will be three experiments conducted to highlight the different purposes of this laboratory. The students must share the responsibility of carrying out these experiments. The general methods and procedures for each of these experiments are as follows:

1.Anthropometric Measurements

a.Accurately measure the height (in meters) of the subject with a long

anthropometer and the weight of the subject (in Newtons) with a weight

scale. For these measurements, the subject should be dressed in minimal

clothing and with no shoes.

b.Using Table 3.1 (Anthropometric Data) in Biomechanics and Motor

Control of Human Movement by David A. Winter and the measured

total body weight and height, determine the weight (in Newtons) of the

shank and foot segments (multi-segment system) and the Cartesian

coordinates (in meters) of the center of mass of this multi-segment

system from the center of the knee joint when the line representing the

shank is horizontal and the ankle is in maximum plantar flexion. Note

that the foot should be fixed (possibly taped) in this position and this

position should be maintained for all subsequent measures of knee

flexion torque. By plantar flexing the ankle, the gastrocnemius is in a

shortened state and its contribution, as a two joint muscle, to knee joint

flexion torque is minimized.

2.Calibration (see Calibration Procedures on the last page)

a.Calibrate the torque readings of the isokinetic dynamometer by using

known weights and moment arms as input to the APAS system. If

possible, use weights that create torques in the range of expected

minimum to maximum torque values of knee flexion for the subject.

b.Calibrate the goniometer output of the isokinetic dynamometer by using

a mechanical goniometer and/or level to establish a horizontal to vertical

range (90) for the mechanical arm of the dynamometer. Determine the

offset between the mechanical arm of the isokinetic dynamometer and

the line representing the shank of the subject.

3.Subject Preparation

a.Before collecting data in each of the experiments, the subject should be

familiarized with the setting and tasks to be performed.

b.It is appropriate to provide a warm up and a few practice trials. This

may reduce the use of antagonistic muscle contraction, typical of the

early learning phase of a motor skill; increase the reproducibility of the

performance; and reduce the chance of injury.

4.Data Collection

a.Records saved and subsequently printed from each experiment must be

properly identified with the following information: name of subject, type

of physical activity performed, and angular velocity setting of the

isokinetic dynamometer.

Specific Methods and Procedures:

In addition to the general methods and procedures, the three individual experiments have their own specific methods and procedures that must be followed.

Experiment 1 – Comparison of Cadaver-Based Measurements of the Moments of

Foot and Shank Segments (Multi-Segment System) and Experimentally Measured

Moments

a.Set the isokinetic dynamometer at 15/second [(/12)(radians/second)]

and record the torque of the mechanical arm in free fall from a

horizontal position (180) to a vertical position (90). Use a low

sampling rate (100Hz).

b.Affix the subject to the knee flexion attachment of the isokinetic

dynamometer and use a mechanical goniometer to determine the offset

angle between the shank of the subject and arm of the attachment.

c.Determine the values of the torques of the shank and foot segments

(multi-segment system), relative to knee angles, by having the subject

assume a relaxed position (no muscular contraction in the lower

extremity) with this multi-segment system at knee angles from 180

(straight knee) to 90 (posterior knee angle) in increments of 15. For

each measurement, the angular velocity of the isokinetic dynamometer

should be set at 0/second (0 radians/second) and the foot should be in a

maximum plantar flexed position. Use a low sampling rate (100Hz).

d.Determine the values of the torques of the shank and foot segments

(multi-segment system), relative to knee angles, by having the subject

assume a relaxed position (no muscular contraction in the lower

extremity) with this multi-segment system at knee angles from 180

(straight knee) to 90 (posterior knee angle). For this process, set the

angular velocity of the isokinetic dynamometer to 15/second

[(/12)(radians/second)] and record the torque-time and knee angle-

time histories beginning with the knee fully extended. The foot should

be in a maximum plantar flexed position throughout the movement. Use

a low sampling rate (100Hz).

e.Determine the values of the torques of the shank and foot segments

(multi-segment system), relative to knee angles, by using anthropometric

data from the subject’s height and weight and proportion data from

cadavers provided in Table 3.1 (Winter, 1990, second edition). Assume

a maximum plantar flexed foot position.

Experiment 2 – Biomechanics of Maximum Isometric Knee Flexion Torque for

Various Knee Joint Angles

a.Record the maximum isometric torques for knee angles of 165, 150,

135, 120, 105, and 90. Use a low sampling rate (100Hz).

b.Randomize the order of the knee joint angle used and provide sufficient

rest between trials to minimize the influence of fatigue.

Experiment 3 – Biomechanics of Maximum Isokinetic Knee Flexion Torque for

Various Knee Joint Angles and Angular Velocities

a.Record the torque-time and knee angle-time histories for maximum

isokinetic knee flexion at angles from 180 to 90 for isokinetic

dynamometer angular velocities of 30/second [(/6)(radians/second)]

at  60Hz, 90/second [(/2)(radians/second)] at  200Hz, and

180/second [()(radians/second)] at  400Hz.

b.Randomize the order of angular velocity used and provide sufficient rest

between trials to minimize the influence of fatigue.

Results:

The Results are the responses to the statements that follow. They are to be written in a scientific format. You should develop figures, graphs, and spreadsheet tables to make the results easy to read. Also, include and label graphs generated as output from the APAS system to highlight how you obtained your results. Your format should differ from the normal scientific format in that you mustshow your work (i.e., how you calculated the results). If there are several iterations of the same calculation process, you only need to show the first to demonstrate your understanding.

Experiment 1

1.Calculate the moments associated with anthropometric characteristics of the

subject for knee angles of 165, 150, 135, 120, 105, and 90. Note that

you will need to make some assumptions about the location of the center of

mass of the foot in the plantar flexed position.

2.Determine the moments of the shank and foot segments (multi-segment

system) for both the isometric and isokinetic conditions for knee angles of

165, 150, 135, 120, 105, and 90. Show your work. [Note that you

should use the APAS output data from Experiment 1 and subtract the

moments associated with the mechanical arm of the isokinetic dynamometer

for each corresponding angle. Take into consideration that there is an offset

between the arm of the isokinetic dynamometer and the orientation of the

shank.] Plot the calculated moments from the anthropometric method and the

two sets of moments from the isokinetic dynamometer data to show

similarities/discrepancies.

Experiments 2 and 3 [***Since the magnitude of the moments associated with the mechanical arm of the isokinetic dynamometer is relatively small in comparison to the moments generated during isometric and isokinetic contractions, ignore moments associated with the weight of the arm of the isokinetic dyanmometer for Experiments 2 and 3.]

1.Calculate Fc, Fx, OI, 1, F1, and Fy for the recorded torque values of the

isometric and isokinetic contractions and the geometry of the Hypothetical

Model for knee angles (2) of 165, 150, 135, 120, 105, and 90. Show

your work and display the results in a table. Prepare plots of the table values

to facilitate understanding.

2.Calculate the power generated at the knee angles (2) of 165, 150, 135,

120, 105, and 90 for the angular velocities of 30/second

[(/6)(radians/second)], 90/second [(/2)(radians/second)], and

180/second [()(radians/second)]. Show your work and display the

results in a table. Prepare plots of the table values to facilitate understanding.

Note that power = moment (in Nm) X angular velocity (in radians/second).

3.Calculate the mechanical advantage of the line of pull of the hamstring

muscles in the Hypothetical Model, relative to the knee joint center, for knee

joint angles of 165, 150, 135, 120, 105, and 90.

Discussions and Conclusions

The Discussions and Conclusions are the responses to the statements and questions that follow. They are to be written in a scientific format.

1.Display Results 1. in a labeled table and in plots.

What are the reasons for the discrepancies in the moment values for the

knee joint angles of 165, 150, 135, 120, 105, and 90 values as

measured by the three methods?

2a.Neatly plot on one sheet of graph paper Fx versus 2, Fy versus 2, and

F1 versus 2 for maximum isometric contractions for the knee joint angles of

165, 150, 135, 120, 105, and 90. Distinguish between the three lines.

2b.Neatly plot on one sheet of graph paper Fx versus 2, Fy versus 2, and

F1 versus 2 for maximum isokinetic contractions for the knee joint angles of

165, 150, 135, 120, 105, and 90 for the three angular velocities. Use the

same scale for this plot as was used in 2a.. For the nine lines, distinguish

between the three parameters and three angular velocities.

For 2a. and 2b., explain the relationships that exist between knee joint

angle (2) and the force of muscle contraction (F1), joint turning

component (F1) of muscular contraction, and joint compressive

component (Fy) of muscular contraction. Are these relationships similar

between the isometric and isokinetic contractions? Explain. Is there a

pattern, going from the isometric contractions to faster and faster

isokinetic contractions? In other words, is there a relationship between

angular velocity and the three force vectors? Explain.

3.Neatly plot on one sheet of graph paper the force of muscle contraction (F1)

versus muscle length (OI) for the isometric and three isokinetic contractions.

Distinguish between the four lines.

Can muscle force-velocity and length-velocity relationships justify these

results? Explain.

4.Neatly plot on one sheet of graph paper the mechanical advantage (moment

arm) of the hamstrings to the knee joint center versus F1 for the isometric and

isokinetic contractions for the knee joint angles of 165, 150, 135, 120,

105, and 90. Distinguish between the four lines.

Is there an inverse relationship between mechanical advantage and F1?

Explain.

5.Neatly plot on one sheet of graph paper the mechanical advantage (moment

arm) of the hamstrings to the knee joint center versus and the muscle length

(OI) of the hamstring muscles.

What is the relationship between mechanical advantage and hamstring

length? Explain.

6.Neatly plot on one sheet of graph paper [(Fx)(AI)] versus 2 and [(Fc)(AC)]

versus 2 for the isokinetic contractions of 30/second [(/6)

(radians/second)] for the knee joint angles of 165, 150, 135, 120, 105,

and 90. Note that clockwise moments about the knee joint center (A) are

negative and counterclockwise moments are positive. Distinguish between

the two lines.

An isokinetic dynamometer is said to provide “accommodating

resistance.” Explain this relationship in regard to constant angular

velocity.

7.Neatly plot on one sheet of graph paper power versus angular velocity for the

three isokinetic contraction conditions for the knee joint angles of 165, 150,

135, 120, 105, and 90.

What relationship exists between power and angular velocity? Explain.

What relationship exists between maximum power in each of the three

isokinetic contraction conditions and the joint angle at which it occurred?

What are plausible explanations for this relationship?

8.What effects could internal anatomical differences in the locations of

muscle origins and insertions and bone (lever) lengths have on internally

measured forces and torques? In other words, what effects would

changes in AI, AB, and OB have on internally measured forces and

torques? How would these effects manifest themselves in external

measures of forces and torques?

9.Several assumptions have been provided about this Hypothetical Model.

List at least five additional assumptions which cause this model to be

hypothetical as opposed to an actual model. For each of these

assumptions, conjecture as to its potential influence on the results of the

experiment (i.e., major or minor) and why you think this way.

*CALIBRATION PROCEDURES FOR VOLTAGE SIGNALS

1.Obtain at least two known magnitudes of the quantity (e.g., torque, angle) to be

measured. The range of magnitudes selected should represent the range of expected

experimental values.

2.Obtain the voltage signal from at least two (maximum and minimum) of the known

magnitudes.

3.Plot voltage versus magnitude for all known magnitudes. Hopefully, this plot will

be a line with a constant slope (i.e., linear relation) and zero volts represents zero

magnitude.. If this is not a linear relationship, complex mathematical equations

may need to be used to represent the relationship. Assuming a linear relationship,

continue with these procedures.

4.Establish a ratio between the known magnitudes and measured voltages. For

example:

Known magnitudes - 180, 150, 135, 120, 105, and 90 angles of the

electrogoniometer

Measured voltages – 9 volts for the 180 angle, 7.5 volts for the 150 angle,

7 volts for the 135 angle, 5.5 volts for the 120 angle, 5 volts for

the 105 angle, and 4.5 volts for the 90 angle. Note this assumes that

there are 0 volts for 0 magnitude and that there is nearly a linear

relationship between volts and angles. The relationship between volts

and angles is:

180/9V = 20/volt  a 10V signal is 200

In other words, multiply volts by 20 to obtain degrees.