Composite simulations in ANSYS WB 12

A: WB Simulation does not support direct definition of composite elements, such as composite shells. However, one can add composite definition to surface bodies in WB Simulation by performing the following steps:
1) Add a "Coordinate Systems" branch underneath the Model branch, if it does not already exist. Define a local Coordinate System that will define the orientation of your shell element coordinate systems, if orthotropic/anisotropic material definition is required. Note that the rules described in Section 2.3.1 "Element Coordinate Systems" of the ANSYS Elements Reference apply.
2) Under the Geometry branch, select the part(s) of interest, and in the Details view, change the Coordinate System to the coordinate system defined in step #1 above. This will define the element x-, y-, and z-axes for orthotropic or anisotropic materials.
3) Under the same parts, insert a "Commands" object. In the Commands object, the command syntax would like the following:
---
rdele,MATID
sectype,MATID,shell
secdata, <...>
---

  • The first command deletes the real constant definition associated with the part. MATID tells the program that it is to use the material associated with the part. This line must be present.
  • The second defines the shell section. This line must be present.
  • One secdata line is to be defined for each lamellae.

The standard ANSYS commands for defining section definitions apply, so you can define asmany SECDATA commands as required for each layer. Note that if you have multiple materials, you may need to add "MP" commands in this Commands object to define material IDs (e.g., material ID #2000), then reference the material ID for a particular layer. You can also use other section commands like SECOFFSET and such, as needed.
If you want to save output data for all layers, you can also add "keyopt,MATID,8,1" or "keyopt,MATID,8,2", depending on whether you want to exclude or include the midlayer output.
Solve the model, and the composite definition will be used. Note, however, that postprocessing must be done in ANSYS General Postprocessor or via "Commands" objects under the "Solution" branch in WB Simulation. This is because WB Simulation knows nothing of the composite definition, so the stress output for surface bodies with composite definition will not be correct inside of WB Simulation.
Further detailed information on ANSYS shell element capabilities and definition can be found in Chapter 17 "Shell Analysis and Cross Sections" in the ANSYS Structural Analysis Guide.
Also, Chapter 13 "Composites" of the ANSYS Structural Analysis Guide is also useful, especially if failure definitions are required.

Short example:

! Commands inserted into this file will be executed just after material definitions in /PREP7.

! The material number for this body is equal to the parameter "matid".

! Active UNIT system in Workbench when this object was created: Metric (mm, kg, N, s, mV, mA)

rdele,MATID

sectype,MATID,shell

secdata, 1,MATID,0,3 !TK, MAT, THETA, NUMPT, LayerName

secdata, 1,MATID,0,3

secoffset,MID

seccontrol,0,0,0, 0, 1, 1, 1

!TK = Thickness of shell layer. Zero thickness (not valid for SHELL131 and SHELL132) indicates a dropped layer. The sum of all layer thicknesses must be greater than zero. The total thickness can be tapered via the SECFUNCTION command.

!MAT = Material ID for layer (any current-technology material model is available for SHELL181, SOLID185 Layered Solid, SOLID186 Layered Solid, SOLSH190, SHELL208, and SHELL209, including UserMat). MAT is required for a composite (multi-layered) laminate. For a homogeneous (single-layered) shell, the default is the MAT command setting. Use the TREF and/or the MP, REFT commands to address multiple reference temperatures.

!THETA = Angle (in degrees) of layer element coordinate system with respect to element coordinate system (ESYS).

!NUMPT = Number of integration points in layer. The GUI permits 1, 3, 5, 7, or 9 points (default = 3). However a higher odd number may be specified in the command. The integration rule used is Simpson's Rule. (NUMPT is not used by SHELL131 and SHELL132.)

!LayerName = The layer name (up to 72 characters) in an analysis using FiberSIM data (SECTYPE,,SHELL, FIBERSIM). The layer name is case-sensitive and must match the ply name in the FiberSIM .xml file. (In a non-FiberSIM analysis, this value serves only as a comment in the input.)