1

Turchin, Korotayev / Population Dynamics and Internal Warfare

Population Dynamics and Internal
Warfare: A Reconsideration*

Peter Turchin

University of Connecticut

Andrey V. Korotayev

RussianStateUniversity for the Humanities, Moscow

Abstract

The hypothesis that population pressure causes increased warfare has been recently criticized on the empirical grounds. Both studies focusing on specific historical societies and analyses of cross-cultural data fail to find positive correlation between population density and incidence of warfare. In this paper we argue that such negative results do not falsify the population-warfare hypothesis. Population and warfare are dynamical variables, and if their interaction causes sustained oscillations, then we do not in general expect to find strong correlation between the two variables measured at the same time (that is, unlagged). We explore mathematically what the dynamical patterns of interaction between population and warfare (focusing on internal warfare) might be in both stateless and state societies. Next, we test the model predictions in several empirical case studies: early modern England, Han and Tang China, and the Roman Empire. Our empirical results support the population-warfare theory: we find that there is a tendency for population numbers and internal warfare intensity to oscillate with the same period but shifted in phase (with warfare peaks following population peaks). Furthermore, the rates of change of the two variables behave precisely as predicted by the theory: population rate of change is negatively affected by warfare intensity, while warfare rate of change is positively affected by population densityKey words: population, warfare, dynamics, nonlinear feedback loops, mathematical models.

INTRODUCTION

The argument that increasing population pressure should lead to more warfare has been made by many social scientists. Malthus (1798), for example, saw war as one of the common consequences of overpopulation along with disease and famine. More recently, the assumption of causal connection between population growth and warfare has served as one of the foundations of the ‘warfare theory’ of state formation (Carneiro 1970; 2000: 182–186; Ferguson 1984; 1990: 31–33; Harner 1970: 68; Harris 1972; 2001: 92; Johnson and Earle 2000: 16–18; Larson 1972; Sanders and Price 1968: 230–232; Webster 1975).

Other anthropologists, on the other hand, express doubts regarding this relationship (Cowgill 1979: 59–60; Redmond 1994; Vayda 1974). For example, Wright and Johnson (1975: 284) pointed out that in South-West Iran by the end of the Uruk Period population declined at the same time as conflict increased. Similarly, Kang (2000: 876) suggested that periods of intensive warfare in protohistoric Korea coincided with underpopulation or depopulation, rather than overpopulation. Finally, a cross-cultural test performed by Keeley (1997: 117–121, 202) did not confirm the existence of any significant positive correlation between the two variables under consideration. The cumulative weight of this critique apparently influenced Johnson and Earle to drop the mention of population pressure as a major cause of warfare in pre-industrial cultures from the second edition of their book (2000: 15–16).

We repeated Keeley's test using the Standard Cross-Cultural Sample database (STDS 2002). The result of this test (Figure 1) would appear to drive the final nail in the coffin of the hypothesis that growing population leads to increased conflict. As we argue in this paper, however, such a conclusion is unwarranted. Our argument is as follows. Both population numbers and warfare intensity are dynamic variables, that is, they change with time. Furthermore, these two variables are dynamically interlinked. Population growth may or may not lead to increased warfare, but warfare certainly has a negative effect on population growth. A more sophisticated version of the population-warfare hypothesis, therefore, would propose that population and warfare are two aspects of a nonlinear dynamical system, in which population growth leads to increased warfare, but increased warfare in turn causes population numbers to decline. One possible outcome of such interaction may be sustained oscillations in which the two dynamic variables cycle with the same period, but phase-shifted with respect to each other (for
a nontechnical explanation of the significance of phase shifts, see Turchin 2003b). The theory of nonlinear dynamical systems tells us that we should not necessarily expect a positive linear correlation between the two variables measured at the same time (that is, non-lagged). In fact, depending on the dynamical details of the interaction we may observe a weak positive, a weak negative, or simply no correlation. Thus, in order to empirically test the population-warfare hypothesis we need to use a somewhat more sophisticated approach, which is the subject of this article.

This paper is organized as follows. First, we illustrate our main theoretical point, sketched in the previous paragraph, with an example from non-human population dynamics. Second, we present
a general theoretical framework for understanding the interaction between population density and incidence of warfare, and discuss two specific models, one tailored to prestate (and pre-chiefdom) societies, the other appropriate for agrarian states. Third, and most important, we present empirical tests of model-derived predictions addressing historical dynamics in early modern England, Han and Tang China, and the Roman Empire.

Throughout this paper our primary focus is on internal war. In small-scale stateless societies internal warfare occurs between culturally similar groups, and we expect that population dynamics will most directly affect this type of conflict. External war, by contrast, reflects the characteristics not only of the society studied, but also of its alien adversary. In larger-scale societies, such as agrarian states and empires, internal war refers to conflicts ranging from insurrections and revolts affecting a significant proportion of state territory to periods of full-blown state collapse and civil war. The external wars waged by empires appear to have been determined by causes rather different from population pressure. In fact, most historical empires were continuously involved in external warfare aimed at territorial conquest. Furthermore, agrarian empires usually waged external wars with relatively small professional armies. External war mostly affected populations inhabiting borderlands, and had little effect on the demography of central areas. As a result, the negative demographic impact of external war was usually weak, with the exception of infrequent episodes of complete military disasters resulting in the enemy overrunning core areas of the vanquished state. To summarize, the main hypothesis driving this paper is that there is an endogenous dynamical relationship between population dynamics and internal warfare; we treat external warfare as an exogenous variable driven by factors outside our modeling framework. We should also stress that we do not assume that the interaction between population and warfare is the only process that affects the two variables. Real societies are complex systems, and both population numbers and warfare are affected by many other variables, which we treat as exogenous in our modeling framework. The relative strength of the interaction, which we model explicitly, and other – exogenous – factors becomes an empirical issue, to which we will return in the Discussion.

THEORY

An ecological illustration of dynamical interactions
characterized by lags

We begin by presenting an ecological example illustrating how the simple-minded approach relying on linear correlation between non-lagged dynamic variables can be very misleading. Our main motivation in using a non-human example is that the basic dynamical concepts are non-controversial, being well established in the ecological literature.

The population interaction between predators and their prey is one of the most common mechanisms underlying population cycles (Turchin 2003a). The simplest model for predator-prey systems was proposed by Alfred Lotka and Vito Volterra in the 1920s (Lotka 1925; Volterra 1926):

(1)

where N and P are population densities of prey and predators, respectively. The first equation says that prey population will increase exponentially in the absence of predators (the term aN), but the presence of predators reduces prey's rate of growth (the term – bNP). The more predators there are, the more prey they kill and the slower prey will increase. Too many predators will result in
a negative population growth rate for prey. The second equation says that the more prey there are, the faster will predators increase (the term cNP). The mechanism is simple: predators need to kill and eat prey in order to produce offspring. In the absence of prey (N = 0) predators decline at an exponential rate (the term – dP).

Dynamics predicted by this model are illustrated in Figure 2a. Figure 2b presents the same data as a scatter plot of P against N. The startling result is that there is no correlation between predator and prey density – the regression line is almost perfectly flat. How can that be, since we have explicitly modeled the positive effect of prey density on predators? The answer lies in the fact that predators cannot increase instantaneously in response to high prey numbers – it takes time to give birth to more predators who will eat prey and make even more predators, and so on. In other words, predator population responds to increased prey numbers with a lag. Furthermore, when predators are abundant, they rapidly kill prey off and start starving themselves. But again it takes time for predator population to decline to low numbers. As a result, the positive effect of prey on predator numbers, a mechanism that we have explicitly built in the model, is hidden from us when we use a simple-minded approach of correlating the two variables. But this does not mean that we cannot empirically detect the effect of prey numbers on predators; we just need a better approach.

One way to detect the mechanisms underlying the observed dynamics is to focus not on the structural variables themselves (such as N and P in the Lotka-Volterra model) but on the relationships between the rates of change and the structural variables. For a variety of theoretical and practical reasons, population ecologists usually analyze the rate of change of log-transformed population densities (Turchin 2003a: 25, 184). Define the predator rate of change (on the logarithmic scale) as ∆X(t) = X(t+1) – X(t), where X(t) = log P(t) is the log-transformed density of predators. Plotting ∆X(t) against prey density N(t), we observe a perfect linear and positive relationship (Figure 2c). This should not be surprising, since ∆X(t) is an estimate of dP/(Pdt), and this quantity is linearly related to N by model assumption (see the second Lotka-Volterra equation). Another fruitful approach is to plot one variable against lagged values of the other. For example, if we were to plot P(t) versus N(t−20), we would observe a positive relationship, because the peaks of predator density follow prey peaks with a delay of about 20 years.

We illustrate the theoretical ideas discussed above with a real data from a natural ecosystem (Figure 3). The data document population oscillations of prey, a caterpillar that eats needles of larch trees in the Swiss Alps, and its predators, parasitic wasps. The caterpillar population goes through very regular population oscillations with the period of 8−9 years. Predators (here measured by the mortality rate that they inflict on the caterpillars) also go through oscillations of the same period, but shifted in phase by two years with respect to the prey (Figure 3a). Almost 95% of variation in caterpillar numbers is explained by the model based on wasp predation (Turchin 2003a), but when we plot the two variables against each other we see only a weak, and negative correlation (Figure 3b). If we plot predators against the lagged prey numbers, then we clearly see the positive correlation (Figure 3c).

A model of internal warfare in stateless societies

In this section we extend the insights from the ecological example with a simple mathematical model of internal warfare in stateless societies. Note that we do not propose that the ecological mechanism of predator-prey interaction is of any direct relevance to understanding the dynamics of human societies. Rather, the basic insight has to do with nonlinear dynamics, and is equally applicable to planetary orbits, predator-prey cycles, and, as we hope to show later, the interaction between population dynamics and internal warfare. As we stressed earlier, we focus on internal war (in non-state societies, small-scale warfare between culturally similar groups), because we expect that population dynamics will most directly affect this type of conflict.

The model has two state variables: N, population density, and W, warfare intensity (or frequency). To construct the equation for N we first assume that in the absence of war population will grow logistically. Second, death rate due to warfare is assumed to be directly proportional to warfare frequency. In fact, by appropriately scaling W we can redefine it as the annual warfare death rate, leading to the following equation:

(2)

The dynamics of W are governed by two processes. First, we assume that population density causes warfare by increasing the encounter rate between individuals belonging to different groups (‘tribes’). If each tribe sends out foraging parties of a certain size, then the total number of foraging parties is proportional to N.
A single party will encounter other parties at the rate also proportional to N. The total number of encounters per unit of time, then, will be proportional to N 2 (the product of total foraging parties and encounter rate per party). Let us assume that each encounter may initiate hostility with a certain fixed probability. Thus, the rate of hostility initiation is aN 2, where a is the proportionality constant.

Second, we assume that the intensity of warfare, in the absence of hostility initiation events, declines gradually at the exponential rate b. This assumption reflects the ‘inertial’ nature of warfare: war intensity cannot decline overnight, even if all objective reasons for it have ceased to operate. In fact, the single most frequent reason for going to war in stateless societies is revenge (McCauley 1990: 9; Wheeler-Nammour 1987). Putting the two processes together we have the following equation:

(3)

The term bW in (3) is the rate at which combatants are willing to forget and forgive past injury. It is proportional to W, because high warfare intensity causes greater degree of war fatigue, and therefore greater willingness to de-escalate conflict.

An alternative assumption about hostility initiation is that elevated warfare frequency causes each tribe to send out more war parties. The encounter rate leading to initiation of new conflict, then, will be proportional to the product of population density and warfare intensity (not to population density squared, as in the previous formulation). This assumption leads to the following equation describing the rate of change of W:

(4)

We note that the two alternative versions of the population-warfare model, eqns (2) and (3), or (2) and (4), respectively, are structured in a way that is very similar to the Lotka-Volterra predation model. The second model, in particular, differs from the Lotka-Volterra model only in that the population equation has an extra density-dependent term (1–N/K). This should not be surprising, since some historians have already drawn explicit comparisons between warfare and predation (McNeill 1982). We stress again, however, that we do not justify our model by crude analogy with predator-prey interactions; instead we derived it using arguments from first principles.

Mathematical analysis of the two models indicates that they have very similar dynamical behaviors. In particular, both models are characterized by a single equilibrium that is stable for all values of parameters. However, the approach to the equilibrium is oscillatory (Figure 4a). When we plot warfare frequency against population density (Figure 4b), we see a slightly negative, but essentially flat regression line, even though the relationship is completely deterministic. The reason is the same as in the ecological example: high W reflects high N with a lag. When W is high, N cannot remain at a high level: extra mortality resulting from war will result in a population decline. Hence, the periods of significant population growth should coincide with the periods of relatively low warfare frequency, while increase in warfare will lead to population decline, and we will not see a clean correlation between N and W. The appropriate approach for analyzing these data is by focusing on the rates of change. In the model, the population rate of change is affected by warfare negatively, while the warfare rate of change is positively related to population density.

A model of population dynamics – internal warfare
in agrarian empires

In large agrarian states (‘empires’) the relationship between population dynamics and internal warfare will be strongly affected by the coercive capacity of the state to impose internal peace, and this factor needs to be taken into account. The model that we discuss here is an extension of the mathematical theory of state collapse discussed in Turchin (2003c: Ch. 7) that incorporates the interaction between N and W modeled with eqns (2−3) in the previous section. Note that the model developed here describes the dynamics of agrarian states, in which the overwhelming majority of inhabitants engage in agriculture.

Let N(t)be the number of inhabitants at time t, S(t)be the accumulated state resources (which we can measure in some real terms, e.g., kg of grain), and W(t) the intensity of internal warfare (measured, for example, by extra mortality resulting from this type of conflict). To start deriving the equations we assume that the per capita rate of surplus production, ρ, is a declining function of N (this is Ricardo's law of diminishing returns) (Ricardo 1817). Assuming, for simplicity, a linear relationship, we have

ρ(N)=c1(1 – N/K)

Here c1 is some proportionality constant, and K is the population size at which surplus equals zero. Thus, for N > K, the surplus is negative (the population produces less food than is needed to sustain it). To derive the equation for Nwe start with the exponential form (Turchin 2003a):