Name______Date______Class______

Practice B

Properties of Logarithms

Express as a single logarithm. Simplify, if possible.

1.log3 9  log3 272.log2 8  log2 163.log10 80  log10 125

______

4.log6 8  log6 275.log3 6  log3 13.56.log4 32  log4 128

______

Express as a single logarithm. Simplify, if possible.

7.log2 80  log2 108.log10 4000  log10 409.log4 384  log4 6

______

10.log2 1920  log2 3011.log3 486  log3 212.log6 180  log6 5

______

Simplify, if possible.

13.log4 4614.log5 5 x 515.

______

16.17.log8 8518.log3 94

______

Evaluate. Round to the nearest hundredth.

19.log12 120.log3 3021.log5 10

______

Solve.

22.The Richter magnitude of an earthquake, M, is related to the
energy released in ergs, E, by the formula
Find the energy released by an earthquake of magnitude 4.2.

© Houghton Mifflin Harcourt Publishing Company

Holt McDougal Advanced Algebra

Name______Date______Class______

Properties of Logarithms

Practice A

1.42.64; 64; 6

3.3125; 3125; 54.log10 10,000  4

5.log6 6  16.log8 64  2

7.log5 25  28.log3 3  1

9.log2 32  510.log4 16  2

11.log6 36  212.log5 125  3

13.414.4

15.916.4

17.1218.2

19.1.5920.1.77

21.1.4622.1022 ergs

Practice B

1.log3 243  52.log2 128  7

3.log10 10,000  44.log6 216  3

5.log3 81  46.log4 4096  6

7.log2 8  38.log10 100  2

9.log4 64  310.log2 64  6

11.log3 243  512.log6 36  2

13.614.x 5

15.3016.1

17.518.8

19.020.3.10

21.1.4322.1.26  1018.1 ergs

Practice C

1.log6 216  32.log3 3  1

3.log4 16  24.log6 1296  4

5.log5 125  36.log8 32,768  5

7.log5 625  48.log2 4  2

9.log3 81  410.log8 4096  4

11.log7 7  112.log10 10,000  4

13.614.8x

15.2016.2x 1

17.2x 218.17

19.2.9320.6

21.1222.4.32

23.624.3.32

25.a. log1.06 1.6

b. 8 years

Review for Mastery

1.32.log2 16; 4

3.log9 (3  27); log9 81; 2

4.2  3  65.4  4  16

6.3 log9 81; 3  2  67.5y

8.759.3x

Challenge

1.Both expressions equal .

2.Result is ; formula is easier to compute.

3.Result is ; formula is easier to compute.

4.logab logbc logac

5.

6.log2 32  5; possible answer: using the Chain Rule is much easier.

Problem Solving

1.a.

b. 23.5  log E

c. Yes; by the definition of logarithm; E 1023.5

d. They are both correct; 1023.5 3.16  1023.

2.A3.G

4.C5.F

Reading Strategies

1.True; Product Property

2.True; Quotient Property

3.False; Power Property

4.False: Inverse Property

© Houghton Mifflin Harcourt Publishing Company

Holt McDougal Advanced Algebra