GURU HARKRISHAN PUBLIC SCHOOL, LONI ROAD

PRE-MOCK EXAMINATION -2014

CLASS XII

SUBJECT-MATHEMATIC

ANSWER KEY

Section (A)

1.  3*4 = 2 (3)+ 4-3×4 = -2

2.  tan-12sin⁡2cos-132=tan-12sin2π6

= tan -1[2 sin π /3 ]

= tan -12.32

= π3

3.  | adj A| = lAl3-1

= l A l2 =64

= l A l= ±8

4.  If singular 5-xx+124= 0

20– 4x- 2x- 2 = 0

ð  6 x – 18 = 0

x = 3

5.  Degree = 1

6. f(-x) = Sin 5(-x) = -Sin 5x

odd function

-π2π2sin5xdx=0

SECTION-B

7. Sin -1x + Sin – 1(1-x) = cos-1 x

= > Sin -1[ x1-(1-x)2+(1-x)1-x2=cos-1x [1]

·  = > x2x-x2 +1-x1-x2=sincos-1x=1-x2 [1]

= > x2x-x2+ 1-x2(1-x-1)=0

= > x [2x-x2- 1-x2] = 0 [1]

= > x = 0 or 2x-x2 = 1-x2

= > x = ½ or 0 [1]

8  Given (a,b) * (c,d) = [a+c,b+d]

For commutative

Let (a,b), (c,d) ∈A

(a,b) * (c,d) = [a+c, b+d]

= [c+a, d+b]

= [c,d] * (ab) [1]

Hence. Commutative

For Associative let (a,b) , (c,d) (e,f) ∈ A

Then [ (a,b) * (c,d)] * (e,f) = [a+c, b+c]*(e.f)

= [(a + c) +e, (b+d) +f)

= [a+(c+e), b + (d+f)]

= (a,b) * [ c+e, , d+f)

= (a,b) *[ (c,d) * (e,f)]

Hence Associative [1 / ½]

For a,b,∈ N X N ,if (c,d) ∈ NXN is identify element, then

(a,b) * (c,d)= (c,d) *(a,b) = (a,b)

(a+c, b+d) = (c+a, d+b) = (a,b)

a+c= a, b+d = b, =>c=0 and d = 0

ð  (0,0)∈ N X N is identify element but (0,0) ∈ NXN

No identify element [1 / ½]

Or

We have the given relation

R= { a,b) : l a- b l is a multiply of 4}

Where (a,b) ∈A and A=[0,1,2 …..12]

Reflexivity for any a ∈ A we have | a-a| = 0

Which is multiple of 4

ð  (a,a) ∈R for all a∈R

So , R is reflexive [1]

For Symmetric fora,b∈A

(a,b) ∈R = ⇒ a-bisdivisible by 4⇒|- (b-a)| is divisible by 4, true

⇒|b-a| is divisible by 4

(a,b) ∈ R ⇒(b,a)∈R hence symmetric [1]

For transitive : For a,b,c∈A

(a,b) ∈R and b,c∈R

⇒ a-bisdivisible by 4and b-c is divisible by 4

⇒ a-c is divisible by 4

⇒(a,c) ∈ R Hence transitive.

Hence relation R is an equivalence relation. [2]

9.

Let p(n) = (a I + bA)n = a nI +nan-1 bA

P (1) :aI + bA = aI + bA [1]

Let P(k) be true ⇒(a I + bA)k = a nI +nak-1 bA

To show P(k+1 ) is true i.e (a I + bA)k+1 = a k+1 I+ (k+1) akbA [1]

LHS = (aI+ bA)k(aI+ bA)

= (akI + kak – 1bA) (aI+ bA)

= ak + 1 I2+ akbIA + kakbAI + kak – 1 b2 A2 A2 = 01000100=0000 [2]

OR

We have A = 2-334

A2=2-3342-334=-5-18187

6A=62-334=12-181824 [1]

17I=171001=170017

A2-6A+17I=-5-18187-12-181824+170017 [1]

=0000=0

A2-6A=-17I

17A-1=6I-A [1]

A-1=1176I-A

=1176006-2-334=11743-32 [1]

10.1+a2-b22ab-2b2ab1-a2+b22a2b-2a1-a2-b2

C1→C1-bC3,C2→C2+aC3

=1+a2+b20-2b01+a2+b22ab+a2b+b3-a-a3-ab21-a2-b2 [2]

=1+a2+b2210-2b012ab-a1-a2-b2 [1]

R3→R3-bR1

=1+a2+b2210-2b012a0-a1-a2+b2=1+a2+b23 [1]

11.

y=sin-1x1-x2

⇒1-x2 y=sin-1x

⇒1-x2dydx - x1-x2y = 11-x2 [2]

⇒(1-x2) dydx – xy =1

Again differentiating we get,

(1-x2)d2ydx2 – 2xdydx- xdydx – y =0

⇒(1-x2)d2ydx2 – 3xdydx– y =0 [2]

OR

log (x2+y2)=2tan-1yx

1x2+y22x+2ydydx=21+y2/x2[xdydx - yx2 ] [2]

⇒x+ydydx=xdydx-y

⇒x-ydydx=x+y

⇒dydx=(x+y)/x-y [2]

12.

x=acost+logtant2

dxdt=a-sint+1tant2sec2t2.12

=a-sint+1sint

=acos2tsint [1]

y=a(1+sint)

dydt=accost [1]

dydx=acostsintacos2t= tant [1]

d2ydx2=sec2tdtdx

=sec2tsintacos2t

=1asec4t sint [1]

13.

L.H.L=limx→0-f(x)=limh→0f(0-h)=limh→0f(-h)

=limh→01+k(-h)-1-k(-h)-h

=limh→01-kh-1+kh(1-kh+1+kh)-h(1-kh-1+kh)

=limh→0-2kh-h1-kh-1+kh =-2k2=k [2]

R.H.L= limh→0+f(x)=-1

f(0)=-1 [1]

Since f(x) is conts

...L.H.L=R.H.L=f(0)

...k=-1 [1]

14.

y=4sinθ2+cosθ-θ

dydθ=2+cosθ4cosθ-4sinθ(-sinθ)2+cosθ2-1 [1]

=8cosθ+42+cosθ2-1

=8cosθ+4-4-cos2θ-4cosθ2+cosθ2 [1]

=4cosθ-cos2θ2+cosθ2=cosθ(4-cosθ)2+cosθ2 [1]

In [0,π/2] cosθ>0

Also use -1≤cosθ≤1, dydx>0

...function is increasing [1]

15.

y=4x3-2x5

dydx=12x2-10x4 [1]

Let [x1,y1], tangent passes through origin

dydx]x1,y1, =12x12-10x14

Eq. of tangent

y-y1=(12x12-10x14)(x-x1) [1]

Passing through (0,0)

(0-y1)= (12x12-10x14)(0-x1)+( 4x13-2x15)

=8x15-8x13=0 [1]

... (0,0) (1.2)(-1,-2) [1]

16.

sinx+cosx9+16sin2xdx

Let Sinx-Cosx = t

(Cosx + Sinx)dx = dt

Squaring

1-sin2x = t2

1-t2=sin2x [1]

=dt9+16(1-t2)

=dt25-16t2) [1]

=14sin-14t5+C [1]

=14sin-14(sinx-cosx)5+C [1]

17.

dxcosx-acos⁡(x-b)=1sin⁡(a-b)sin⁡(a-b)dxcosx-acos⁡(x-b) [1]

=1sin⁡(a-b)sin⁡[x-b-x-a]cosx-acos⁡(x-b)dx [1]

=1sin⁡(a-b)tanx-b-tanx-adx [1]

=1sin⁡(a-b)(log sec(x-b)-log sec(x-a)) + C [1]

18.

01cot-11-x+x2dx

=01tan-11-x+x1-x(1+x)dx [1]

=01(tan-11-x+tan-1x)dx

=01(tan-11-(1-x)dx+01tan-1xdx [1]

=201tan-1xdx

=2xtan-1x01-201x1+x2dx [1]

=2xtan-1x-22log⁡(1+x2)01

=π2-log2 [1]

OR

01log⁡(1+x)1+x2dx

Put x= tanθ, we get
I= 0π/4log⁡(1+tanθ)dθ ……(i) [1]

Using property, 0afxdx=0afa-xdx

I= 0π/4log⁡1+tanπ4-θdθ [1]

= 0π/4log⁡1+1-tanθ1+tanθdθ

= 0π/4log⁡21+tanθdθ …….(ii) [1]

Adding (i) and (ii), we get

2I= 0π/4log⁡2dθ = π4log2

⇒ I= π8log2 [1]

19.

Given (x-y)dydx= x + 2y

dydx = x+2yx-y - (i)

Let y = vx, dydx= v+ xdvdx [1]

From (i), v+ xdvdx = 1+2v1-v

1-vv2+v+1dv = dxx [1]

Solving integration,

-12log(x2+xy+ y2) + 3tan-12y+x3x= C [2]

SECTION-C

20.

The given differential equation can be written as :

dxdy + (coty)x = cosy , which is a linear differential equation [1]

I.F = ecoty dy= siny [1]

=> The general equation is

xsiny = cosy.sinydy + C [1]

xsiny = - 14cos(2y) + C [1]

It is given that y = 0, when x = 0

ð  C = ¼

ð  The required equation is : x siny = 14(1 - cos(2y)) = 12sin2y [2]

21.

LHS=tanπ4+12cos-1ab+tanπ4-12cos-1ab

=1+tan12cos-1ab1-tan12cos-1ab + 1-tan12cos-1ab1+tan12cos-1ab [2]

=1+tan12cos-1ab2+1-tan12cos-1ab21-tan2(cos-1ab)=21+tan12cos-1ab21-tan2(cos-1ab) [2]

=2cos212cos-1ab = 2coscos-1ab=2ab= 2ba= RHS [2]

OR

tan-12tanα2.tanπ4-β21-tan2α2tan2π4-β2

= tan-12tanα2.tan1-tanβ21+tanβ21-tan2α2tan21-tanβ21+tanβ22 [112]

= tan-12tanα2.1-tan2β21-tan2α2+tan2β2+2tanβ2-tan2α2tan2β2+2tan2α2tan2β2 [112]

=tan-12tanα2.1-tan2β21-tan2α21+tan2β2+2tanβ21+tan2α2

=tan-12tanα21+tan2α2.1-tan2β21+tan2β21-tan2α21+tan2α2+2tanβ21+tan2β2 [112]

= tan-1sin α cos βcos α+sinβ [112]

22. Graph - [2]

Max Z = 22x + 18y

Sub to x + y ≤ 20

And, 360x + 240y ≤ 5760 or 3x + 2y ≤ 48 [2]

x ≥ 0, y ≥ 0

Feasible regions are O(0,0), A(0,20), P (8,12), B(16,0)

Corner Points / Z = 22x + 18y
(0,0) / 0
(0,20) / 360
(8,12) / 392
(16,0) / 352

[2]

23.

Let award money for Honesty,Regularity and Homework be Rs x, Rsy,Rs z resp.

Acc. to ques,

x+y+Z=6000

x+3z=11000

x+z=2y

x-2y+z=0 [1]

11110-31-21xyz=6000110000

AX=B

X=A-1B

|A|=6≠0 [1]

... A-1 exist

Adj A=62-2-3033-2-1=6-3320-2-23-1

A-1=166-3320-2-23-1 [2]

X=166-3320-2-23-16000110000

xyz=50020003500

Award for Hardwork = Rs 3500

Award for Honesty = Rs 500

Award for Regularity = Rs 2000 [1]

The Value which should be included is Empathy. [1]

24.

Hypotenuse = H = AB = AP + PB ………..(i)

Now, cosecθ=APa⇒AP=a cosecθ

And BPb=secθ ⇒ BP=bsecθ

From (i), h = a cosecθ+ bsecθ [1]

dhdθ=a(-cosecθcotθ)+ bsecθtanθ [1]

For minimum h,dhdθ=0⇒ a cosecθcotθ= bsecθtanθ

⇒ab=tan3θ . ⇒ tanθ=ab13⇒sinθ=a13a23+b23, cosθ=b13a23+b23 [2]

Show that d2hdθ2> 0, for tanθ= ab13

Put in (ii) h = a.a23+b23a13+b.a23+b23b13 = a23+b233/2 [2]

OR

Profit P =x5-x100-x5+500 [1]

= 5x-x2100-x5 + 500

dpdx = 5-2x100-15 [2]

= -2x100+245=0

⇒2x100=245

x = 240 [1]

d2pdx2= -150<0 for x=240 [2]

25.

013x2+2x+1dx

a=0 ,b=1 ,nh=1

013x2+2x+1dx=limh→0hf0+fh+f2h+...…...fx-1h [1]

=limh→0h1+3h2+2h+1+3(2h)2+22h+1+... ….3x-1h2+2x-1h+1 [1]

=limh→0hx+3h2(x-1)x(2x-1)6+2hx(x-1)2 [2]

=limh→0nh+2nh-hnh2nh-h2+nhnh-h

=1 + 1 + 1 = 3 [2]

26.

Given circles are x2+y2=4 and x-22+y2=4.

Eliminating y from the two equations,we get

4-x2=4-x-22

⇒4-x2=4-x2+4x-4

⇒ x=1 [1]

Area = 2014-x-22dx+124-x2dx [2]

=2x-224-x-22+2sin-1x-2201+x24-x2+2sin-1x212 [1]

=2-32-2.π6+2.π2+2.π2-32-2.π6

= 22π-2π3-3=8π3-23sq units. [1]

11