5. References Cited
4.B PERTINENT ACHIEVEMENTS UNDER PRIOR NSF SUPPORT
A01.The following papers were featured on the cover of the journal: IEEE Transactions on Nanotechnology9, 149 (2010); Physica Status Solidi (a) 207, 348 (2010); Appl. Phys. Lett.91, 093110 (2007); Appl. Phys. Lett.91, 043103 (2007); Appl. Phys. Lett.89, 202101 (2006); and Appl. Phys. Lett.88, 233102 (2006).
A02.“Direct Spectroscopic Evidence for the Formation of One-Dimensional Wetting Wires During the Growth of InGaAs/GaAs Quantum Dot Chains,” X. Wang, Z.M. Wang, B.L. Liang, G.J Salamo, C.-K. Shih, Nano Letters6, 1847 (2006).
A03.“Controlling Planar and Vertical Ordering in Three-Dimensional (In,Ga)As Quantum Dot Lattices by GaAs Surface Orientation,” M. Schmidbauer, S.Seydmohamadi,D. Grigoriev, Z.M. Wang, Y. I. Mazur, P. Schafer, M. Hanke, R. Kohler, G.J. Salamo, Phys. Rev. Lett.96, 066108 (2006).
A04.“On the complex behavior of strain relaxation in (In,Ga)As/GaAs(001) quantum dot molecules,” M. Hanke, M. Dubslaff, M. Schmidbauer, Z.M. Wang , Y.I.Mazur, P.M. Lytvyn,J.H. Lee, and G.J. Salamo, Appl. Phys. Lett.95, 023103 (2009).
A05.“Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures,” B.L. Liang, Z. Wang, Y.I. Mazur, S. Seydmohamadi, M.E. Ware, G.J. Salamo, Optics Express 15, 8157 (2007).
A06.“Aharonov-Bohm Interference in Neutral Excitons: Effects of Built-In Electric Fields,” M. D. Teodoro, V. L. Campo, Jr., V. Lopez-Richard, E. Marega, Jr., G. E. Marques, Y. Galvão Gobato, F. Iikawa, M. J. S. P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Y.I. Mazur, M. Benamara, and G.J. Salamo,Phys. Rev. Lett.104, 086401 (2010).
A07.“Controlling double vortex states in low-dimensional dipolar systems,” S. Prosandeev and L. Bellaiche, Phys. Rev. Lett.101, 097203 (2008).
A08.“Resonance Fluorescence from a Coherently Driven Semiconductor Quantum Dot in a Cavity,” A. Muller, E. B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.-K. Shih, Phys. Rev. Lett. 99, 187402 (2007).
A09.“Orbital Reconstruction and Covalent Bonding at an Oxide Interface,” J. Chakhalian, J.W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Science318 1114 (2007).
A10.“Magnetism at the interface between ferromagnetic and superconducting oxides,” J. Chakhalian, J.W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J. C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.-U. Habermeier and B. Keimer, Nature Physics2, 244 (2006).
A11.“Coherent Exciton–Surface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures,” P. Vasa, R. Pomraenke, S. Schwieger, Y.I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G.J. Salamo, and C. Lienau,Phys. Rev. Lett. 101, 116801 (2008).
A12.“Resonantly driven coherent oscillations in a solid-state quantum emitter,” E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D.G. Deppe, M. Xiao, W. Ma, G.J. Salamo, C.-K. Shih, Nature Physics5, 203 (2009).
A13.“Direct Evidence of Interlevel Exciton Transitions Mediated by Single Phonons in a Semiconductor Quantum Dot Using Resonance Fluorescence Spectroscopy,” E. B. Flagg, J. W. Robertson, S. Founta, W. Ma, M. Xiao, G. J. Salamo, C.-K. Shih, Phys. Rev. Lett.102, 097402 (2009).
A14.“Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” J. Wu, Z.H. Li, D. Shao, M.O. Manasreh, V.P. Kunets, Z.M.Wang, G.J. Salamo, B.D. Weaver, Appl. Phys. Lett.94, 171102 (2009).
A15.“Intermediate-band material based on GaAs quantum rings for solar cells,” J. Wu, D.L. Shao, Z.H. Li, M.O. Manasreh, V.P. Kunets,Z.M. Wang, and G.J. Salamo, Appl. Phys. Lett.95,071908 (2009).
A16.“Electro-Optic Switch in Ferroelectric Thin Films Mediated by Surface Plasmons,” S. Liu and Min Xiao, Appl. Phys. Lett.88, 143512 (2006).
A17.“Enhanced thermoelectricity in correlated oxide heterostructures of nickelates,” E.J. Moon and J. Chakhalian, submitted to Phys. Rev. B. (Rapid Communications).
A18.“Interparticle Influence on Size/Size Distribution Evolution of Nanocrystals”, J. Thessing, J. Qian, H. Chen, N. Pradhan, X. Peng, J. Am. Chem. Soc.1292736 (2007).
A19.“Initialization and read-out of spins in coupled core-shell quantum dots,” J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, D.D. Awschalom, Nature Physics2, 831 (2006).
A20.“Formation of Nearly Monodisperse In2O3 Nanodots and Oriented-Attached Nanoflowers: Hydrolysis and Alcoholysis vs. Pyrolysis,” A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, X. Peng, J. Am. Chem. Soc.128, 10310 (2006).
A21.“Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry,” N. Pradhan, and X. Peng, J. Am. Chem. Soc.129, 3339 (2007).
A22.“Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters,”R. G. Xie, X. Peng, J. of the Am. Chem. Soc.131, 10645 (2009).
A23.“Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors,” R. Xie, M. Rutherford and X. Peng,J. Am. Chem. Soc. 131(15), 5691 (2009).
A24.“Second-harmonic whispering-gallery modes in ZnO nanotetropod,”Y. Zhang, H. Zhou, S. Liu, Z.R. Tian, and M. Xiao., Nano Letters9, 2109 (2009).
A25.“Controlling Blinking in Multilayered Quantum Dots,” R. Wang, Y. Zhang, C. Gan, J. Muhammad, and Min Xiao, Appl. Phys. Lett.96, 151107 (2010).
A26.“Fluorescence Lifetime of Mn-doped ZnSe Quantum Dots with Size Dependence,” C, Gan, Y. Zhang, Min Xiao,D. Battaglia and X. Peng, Appl. Phys. Lett. 92, 241111(2008).
A27.“Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared,” R. Xie, D. Battaglia, and X. Peng, J. Am. Chem. Soc.129, 15432 (2007).
A28.“Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor,” D.A. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng,Chemistry of Materials22, 1437 (2010); and private communication NN-Labs.
A29.“InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible,”R. Xie, K. Chen, X. Chen, and X. Peng, Nano Research, 1, 457 (2008).
A30.“Nonlinear Talbot Effect,” Y. Zhang, J. Wen, S.N. Zhu, and M. Xiao, Phys. Rev. Lett.104, 183901 (2010).
A31.“Dislocation filtering by AlxIn1-xSb/ AlyIn1-ySb interfaces for InSb-based devices grown on GaAs(001) substrates,” T.D. Mishima, M. Edirisooriya, and M.B. Santos, Appl. Phys. Lett.88, 191908 (2006).
A32.“Reduction of micro-twin defects for high-electron-mobility InSb quantum wells,” T.D. Mishima, M. Edirisooriya, and M.B. Santos, Appl. Phys. Lett.91, 062106 (2007).
A33.“Micro-twin defects in InSb/AlInSb layers grown on (001) GaAs- Application of the <116> directional analysis,” T.D. Mishima and M.B. Santos, Physics Procedia3, 1373 (2010).
A34.“Dislocation-filtering AlInSb buffer layers for InSb quantum wells—Analysis by high-tilt bright-field and dark-field TEM,” T.D. Mishima, M. Edirisooriya, and M.B. Santos, Physica E (in press).
A35.“InSb quantum well based micro-Hall devices: potential for pT-detectivity,” Vas. P. Kunets, S. Easwaran, W. T. Black, D. Guzun, Yu. I. Mazur, and G. J. Salamo, N. Goel, T. D. Mishima, and M. B. Santos, IEEE Transactions on Electron Devices56, 683 (2009).
A36.“InSb Quantum-Well Structures for Electronic Device Applications,” M. Edirisooriya, T.D. Mishima, C.K. Gaspe, K. Bottoms, R.J. Hauenstein, and M.B. Santos, J. Cryst. Growth311, 1972 (2009).
A37.“Measurement of the Dresselhaus and Rashba spin-orbit coupling via weak anti-localization in InSb quantum wells,” A.R. Dedigama, D. Jayathilaka, S.H. Gunawardana, S.Q. Murphy, M. Edirisooriya, N. Goel, T.D. Mishima and M.B. Santos, Springer Proceedings in Physics119, 35 (2008).
A38.“Current focusing in InSb heterostructures,” A.R. Dedigama, D. Deen, S.Q. Murphy, N. Goel, J. Keay, M.B. Santos, K. Suzuki, S. Miyashita, and Y. Hirayama, Physica E 34, 647 (2006).
A39.“Experimental Evidence of Nonlinear Magnetic Field Dependence of Spin Polarization in Two-Dimensional Electron Systems,” K.F. Yang, H.W. Liu, T.D. Mishima, M.B. Santos, K. Nagase, Y. Hirayama, submitted to Phys. Rev. Lett.,
A40.“Dynamic Nuclear Polarization and Nuclear Magnetic Resonance in the Simplest Pseudospin Quantum Hall Ferromagnet,” H. W. Liu, K. F. Yang, T. D. Mishima, M. B. Santos, Y. Hirayama, submitted to Phys. Rev. Lett.,
A41.“Comprehensive doping and temperature studies of spin relaxation in InSb,” Dorel Guzun, Eric Decuir Jr., Vasyl Kunets, Yu Mazur, Gregory J. Salamo, P.A.R. Dilhani Jayathilaka, Sheena Murphy, Tetsuya Mishima, and Michael Santos, Appl. Phys. Lett.95, 241903 (2009).
A42.“Intersubband magneto-absorption by electrons in InSb quantum wells,” M.B. Santos, S.D. Lowe, T.D. Mishima, R.E. Doezema, L.C. Tung, Y-J. Wang, Proceedings of the 30th International Conference on the Physics of Semiconductors, in press.
A43.“Cyclotron resonance in p-doped InSb quantum wells,” M.B. Santos, M. Edirisooriya, T.D. Mishima, C.K. Gaspe, J. Coker, R.E. Doezema, X. Pan, G.D. Sanders, C.J. Stanton, L.C. Tung, and Y-J. Wang, Physics Procedia3, 1201 (2010).
A44.“InAs-based interband cascade lasers near 6 m,” Zhaobing Tian and Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis, and Matthew B. Johnson, Electronics Letters45, 48 (2009).
A45.“Plasmon-waveguide interband cascade lasers near 7.5 m,” Z. Tian, R.Q. Yang, T. D. Mishima, M.B. Santos, and M.B. Johnson, Photonics Technology Letters21, 1588 (2009).
A46.“Interband Cascade Photovoltaic Devices,” Rui Q. Yang, Zhaobing Tian, J.F. Klem, Tetsuya D. Mishima, Michael B. Santos, and Matthew B. Johnson, Appl. Phys. Lett.96, 063504 (2010).
A47.“MBE Growth of IV-VI Nanowires on a Self-organized Template,” L.A. Elizondo, P.J. McCann, J.C. Keay, and M.B. Johnson, Materials Research Society Symposium Proceedings2167, in press.
A48.“Enhanced photoluminescence from free-standing microstructures fabricated on MBE grown PbSe-PbSrSe MQW structure”, S. Mukherjee, S. Jain, F. Zhao, J.P. Kar, D. Li, Z. Shi, Microelectronic Engineering85, 665 (2008).
A49.“Nanomechanical properties of a Ni nanodot-patterned surface,” H. Wang, M. Zou, P.R. Larson, E.S. Sanchez, K.L. Hobbs, M.E. Curtis, M.B. Johnson, and O.K. Awitor, Nanotechnology19, 295708 (2008).
A50.“Friction Study of a Ni Nanodot-patterned Surface,” H. Wang, N.R. Premachandran, M. Zou, P.R. Larson, A.L. Pollack, K.L. Hobbs, M.B. Johnson, and O.K. Awitor, Tribology Letters28, 183 (2007).
A51.“Ni Nanodot-patterned Surfaces for Adhesion and Friction Reduction,” M. Zou, H. Wang, P.R. Larson, K.L. Hobbs, M.B. Johnson, and O.K. Awitor, Tribology Letters24, 137 (2006).
A52.“Nanotechnology: Quantum Dot Technology for Advanced Biomedical Applications,” D.H. Dahanayaka, I.S. Bayer, A. Biswas, K.P. Roberts, and L.A. Bumm, Vacuum Technology & Coating10, 26-32 (2009).
A53.“Single Flat Gold Nanoparticle Microscopy and Spectroscopy,” W.D. Tennyson, C.E. Allen, D.R. Freno, D.H. Dahanayaka, and L.A. Bumm, Microscopy and Microanalysis, 14, 22 (2008).
A54.“Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” A. Biswas, I. S Bayer, D. H Dahanayaka, L. A Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S Biris, M G. Norton, and E. Suhir, Nanotechnology20, 325705 (2009).
A55.“Single-molecule protein unfolding in solid state nanopores,” D. Talaga and J. Li, J. Am. Chem. Soc.131, 9287 (2009).
A56.“Electrical Characterization of Protein Molecules by a Solid-State Nanopore,” D. Fologea, B. Ledden, D.S. McNabb, and J. Li, Appl. Phys. Lett.91, 053901 (2007).
4.C INTRODUCTION
B01.“More is Different,” P.W. Anderson, Science177, 393 (1972).
4.D IRG 1: COMPLEX NANOSCALE MATERIALS
C01.“Spin-density-functional-based search for half-metallic antiferromagnets,” W.E. Pickett, Phys. Rev. B57, 10613 (1998).
C02.“Orbital Order and Possible Superconductivity in LaNiO3/LaMO3 Superlattices,” J. Chaloupka and G. Khaliulin, Phys. Rev. Lett. 100, 16404 (2008).
C03.“Structure–Property Relation of SrTiO3/LaAlO3 Interfaces,” M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, D. H. A. Blankl, Adv. Mater. 21, 1665 (2009).
C04.“Limits on vanadium oxide Mott metal–insulator transition field-effect transistors,” S. Hormoz and S. Ramanathan, Solid-State Electronics54, 654 (2010).
C05.“Second-harmonic Imaging from Modulated Domain Structure,” Y. Zhang, F. Wang, K. Geren, S. N. Zhu, and Min Xiao, Optics. Letters35, 178 (2010).
C06.“Sequential vortex hopping in an array of artificial pinning centers,” J.C. Keay, P.R. Larson, K.L. Hobbs, M.B. Johnson, O.M. Auslaender, K.A. Moler, J.R. Kirtley, Phys. Rev. B80, 165421 (2009).
C07.“Comprehensive doping and temperature studies of spin relaxation in InSb,”
D. Guzun, E.A. DeCuir, V.P. Kunets, Y.I. Mazur, G.J. Salamo, S.Q. Murphy, P.A.R. D. Jayathilaka, T.D. Mishima, and M.B. Santos,Appl. Phys. Lett.95, 241903 (2009).
C08.“Unusual phase transitions in ferroelectric nanodisks and nanorods,” I.I. Naumov, L. Bellaiche, and H. Fu, Nature432,737 (2004).
C09.“Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires,” I.I. Naumov and H. Fu, Phys. Rev. Lett.95, 247602 (2005).
C10.“Phase transformation path in Pb(ZrTi)O3 nanoparticles under homogeneous electric fields,” I.I. Naumov and H. Fu, Phys. Rev. Lett.98, 077603 (2007).
C11.“Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal,” Y. Zhang, Z. Islam, Y. Ren, P.A. Parilla, S.P. Ahrenkiel, P.L. Lee, A. Mascrenhas, M.J. McNevin, X.-Y. Huang, J. Li, I. Naumov and H. Fu, Phys. Rev. Lett.99, 215901 (2007).
C12.“Cooperative response of Pb(ZrTi)O3 nanoparticles to curled electric fields,” I.I. Naumov and H. Fu, Phys. Rev. Lett.101,197601 (2008).
C13.“Polarization transitions in interacting ring 1D array,” B. Roostaei and K.J. Mullen, Phys. Rev. B78, 075411 (2008).
C14.“Kittel law in BiFeO3 ultrathin films: a first-principles-based study,” S. Prosandeev, S. Lisenkov, and L. Bellaiche, Phys. Rev. Lett., in press (August 2010).
C15.“Bridging multiferroic phase transitions by epitaxial strain in BiFeO3,” I. C. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, and B. Dkhil, Phys. Rev. Lett.105, 057601 (2010).
C16.“Chiral patterns of tilting of oxygen octahedra in zero-dimensional ferroelectrics and multiferroics: A first principle-based study,” D. Sichuga, W. Ren, S.Prosandeev, and L. Bellaiche, Phys. Rev. Lett.104, 207603 (2010).
C17.“Discovery of incipient ferrotoroidics from atomistic simulations,” S. Prosandeev, A. R. Akbarzadeh and L. Bellaiche,Phys. Rev. Lett.102, 257601(2009).
C18.“The Observation of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” G. Duree, Jr., J. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp and R.R. Neurgaonkar, Phys. Rev. Lett.71, 533 (1993).
C19.“Optically Induced Ferroelectric Domain Gratings in the Galssy Polarizaiton Phase,” A. Kewitsch, M. Segev, A. Yariv, T. Towe, and G.J. Salamo,Phys. Rev. Lett.73, 1174 (1994).
C20.“Dark Photorefractive Spatial Solitons and Photorefractive vortex soliton,” G. Duree, M. Morin, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. DiPorto, and E. Sharp, Phys. Rev. Lett.74, 1978 (1995).
C21.“Circular waveguides induced by 2-D bright solitons,” M. Shih, M. Segev, and G.J. Salamo, Opt. Lett.21, 931, (1996).
C22.“Three-Dimensional Spiraling of Interacting Spatial Solitons,” M. Shih, M. Segev, and G. Salamo, Phys. Rev. Lett.78, 2551, (1997).
C23.“Single Beam Polarization Holographic Grating Recording Using Photogalvanic-Photorefractive Crystals,” N. Kukhtarev, G. Dovgalenko, G.C. Duree, Jr. and G.J. Salamo, Phys. Rev. Lett.71, 4330 (1993).
C24.“Quantum Hall Effect in Polar Oxide Heterostructures,”A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki,Science 315,1388 (2007).
C25.“Why some interfaces cannot be sharp,” N. Nakagawa, H.Y. Hwang, and D.A. Muller. Nature Materials5, 204 (2006).
C26.“Evidence of Orbital Reconstruction at Interfaces in Ultrathin La0.67Sr0.33MnO3 Films,” A. Tebano C. Aruta, S. Sanna, P.G. Medaglia, G. Balestrino, A.A. Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni and N.B. BrookesPhys. Rev. Lett. 100, 137401 (2008).
C27.“Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO3/SrTiO3 interface,” R. Pentcheva and W.E. Pickett, Phys. Rev. B78, 205106 (2008).
C28.“Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles,” I.A. Kornev, L. Bellaiche, P.-E. Janolin, B. Dkhil and E. Suard, Phys. Rev. Lett.97, 157601 (2006)
C29.“Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” E. Ozbay, Science 311, 189 (2006).
C30.“Birth of the nanolaser,” Editorial, Nature Photonics, 3, 545 (2009).
C31.“The nonlinear Fano effect,” M. Kroner, A.O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P.M.Petroff, W. Zhang, R. Barbour, B.D. Gerardot, R.J. Warburton, and K. Karrai, Nature 451, 311 (2008).
C32.“Optically Induced Hybridization of a Quantum Dot State with a Filled Continuum,” P.A. Dalgarno, M. Ediger, B.D. Gerardot, J.M. Smith, S. Seidl, M. Kroner, K. Karrai, P.M. Petroff, A.O. Govorov, and R.J. Warburton, Phys. Rev. Lett.100, 176801 (2008).
C33.“Tunneling-barrier controlled excitation transfer in hybrid quantum dot-quantum well nanostructures,” Y.I. Mazur, V.G. Dorogan, E. Marega Jr., Z.Y. Zhuchenko, M.E. Ware, M. Benamara, G.G. Tarasov, P. Vasa, C. Lienau, and G.J. Salamo, J. Applied Physics (accepted August 2010).
C34.“Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites,” T. Zhang, W. Dong, M. Keeter-Brewer, S. Konar, R. Njabon, and Z.R. Tian, J. Am. Chem. Soc128, 10960 (2006).
4.D IRG 2: NARROW GAP HETEROSTRUCTURES
D01.“Condensed-Matter and Materials Physics, The Science of the World Around Us,” Committee on CMMP 2010, The National Academies Press (2007).
D02.“Plasmon-waveguide interband cascade lasers near 7.5 m,” Z. Tian, R.Q. Yang, T.D. Mishima, M.B. Santos, and M.B. Johnson, Photonics Technology Letters21, 1588 (2009).
D03.“Novel structures and concepts for infrared lasers,” R.Q. Yang, Chapter 2 in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, GordonBreach, New York, 2000.
D04.“Interband Cascade Photovoltaic Devices,” Rui Q. Yang, Zhaobing Tian, J.F. Klem, Tetsuya D. Mishima, Michael B. Santos, and Matthew B. Johnson, Appl. Phys. Lett. 96, 063504 (2010).
D05.“Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs,” A. Janotti, S.H. Wei, and S.B. Zhang. Phys. Rev. B65, 115203 (2002).
D06.“Similar and dissimilar aspects of III-V semiconductors containing Bi versus N.,” Y. Zhang, A. Mascarenhas, and L.-W. Wang,Phys. Rev. B71,155201 (2005).
D07.“Band anticrossing in GaInNAs alloys,” W. Shan, W. Walukiwiecz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Fiedman, J.M. Olson, and S.R. Kurtz,Phys. Rev. Lett.82, 1221 (1999).
D08.“Valence-band anticrossing in mismatched III-V semiconductor alloys,” K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna,Physical Review B75, 045203 (2007).
D09.“Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x,” S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett.86, 112113 (2005).
D10.“Growth of InxGa1−xAs heterostructures using Bi as a surfactant,” M.R. Pillai, S.-S. Kim, S.T. Ho, and S.A. Barnett, J. Vac. Sci. Technol. B18, 1232(2000).
D11.“Surfactant enhanced growth of GaNAs and InGaNAs using bismuth,” S. Tixier, M. Adamcyk, E.C. Young, J.H. Schmid, and T. Tiedje, J. Cryst. Growth251, 449(2002).
D12.“Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1-xBix,”X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, M.B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).
D13.“Determination and improvement of spontaneous emission quantum efficiency in GaAs/AlGaAs heterostructures grown by molecular beam epitaxy” J.-B. Wang, D. Ding, S.R. Johnson, S.-Q. Yu, Y.-H. Zhang, Phys. Stat. Sol. (b)244, 2740 (2007).
D14.“Band Edge Alignment of Pseudomorphic GaAs1-ySby on GaAs,” J.-B. Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Yu. G. Sadofyev, Y.-H. Zhang, Phys. Rev. B70, 195339 (2004).
D15. “Elimination of threading dislocations in as-grown PbSe film on patterned Si(111) substrate using molecular beam epitaxy,” B. Weng, F. Zhao, J. Ma, G. Yu, J. Xu, and Z. Shi, Appl. Phys. Lett. 96, 251911 (2010).
D16.“Effect of quantum-well structures on the thermoelectric figure of merit,” D. Hicks and M.S. Dresselhaus, Phys. Rev. B47, 12727(1993).
D17.“Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny∕Ge1−xSix study,” V.R. D'Costa, C.S. Cook, A.G. Birdwell, C.L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, Phys. Rev. B73, 125207 (2006).
D18.“Versatile buffer layer architectures based on Ge1−xSnx alloys,” R. Rouck, J. Tolle, C. Cook, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett.86, 191912 (2005).
D19.“Compliant tin-based buffers for the growth of defect-free strained heterostructures on silicon,” J. Tolle, R. Rouck, A.V.G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett.88, 252112 (2006).
D20.“Molecular approaches to p- and n-nanoscale doping of Ge1−ySny semiconductors: Structural, electrical and transport properties,” J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A.V.G. Chizmeshya, J. Menendez, J. Kouvetakis, Solid-State Electronics53 816 (2009).
D21.“Ge1−ySny/Si(100) composite substrates for growth of InxGa1−xAs and GaAs1−xSbx alloys,” R. Rouck, J. Tolle, B. Forrest, and J. Kouvetakis, V.R. D’Costa, and J. Menendez, J. Appl. Phys. 101, 013518 (2007).
D22.“Ge1−ySny photoconductor structures at 1.55 μm: From advanced materials to prototype devices,” R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. R. D’Costa, J. Menendez, S.-Q. Yu, J. Vac. Sci. Technol. B26, 1952 (2008).
D23.“Nanoscale Thermal Transport and Microrefrigerators on a Chip,” A. Shakouri, Proceedings of IEEE94,1613 (2006).
D24.“Effect of quantum-well structures on the thermoelectric figure of merit,” L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B47, 12727(1993).
D25.“Thin-film thermoelectric devices with high room-temperature figures of merit,” R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature413, 597 (2001).
D26.“Quantum dot superlattice thermoelectric materials and devices,” T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science297, 2229 (2002).
D27.“Reduction of micro-twin defects for high-electron-mobility InSb quantum wells,” T.D. Mishima, M. Edirisooriya, and M.B. Santos, Appl. Phys. Lett.91, 062106 (2007).
D28.“Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” Robert Chau, Suman Datta, Amlan Majumdar, Technical Digest, IEEE Compound Semiconductor Integrated Circuit Symposium (2005 IEEE CSICS), Palm Springs, CA., Nov. 2005, pp. 17-20. (
D29.“High mobility HfO2-based In0.53Ga0.47As n-channel metal-oxide-semiconductor field effect transistors using a germanium interfacial passivation layer,” F. Zhu, H. Zhao, I. Ok, H.S. Kim, J. Yum, J.C. Lee, N. Goel, W. Tsai, C.K. Gaspe, and M.B. Santos, Appl. Phys. Lett. 93, 132902 (2008).
D30.“In0.53Ga0.47As based MOS capacitors with ALD ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm,” N. Goel, P. Majhi, H. Wen, M.B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, W. Tsai, Appl. Phys. Lett. 92, 222904 (2008).
D31.“Majorana fermions in a tunable semiconductor device,” J. Alicea, Phys. Rev. B81, 125318 (2010).
D32.“Spintronics: Fundamentals and applications,” I.Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2204).
D33.“Measurement of the Dresselhaus and Rashba spin-orbit coupling via weak anti-localization in InSb quantum wells,” A.R. Dedigama, D. Jayathilaka, S.H. Gunawardana, S.Q. Murphy, M. Edirisooriya, N. Goel, T.D. Mishima and M.B. Santos, Springer Proceedings in Physics119, 35 (2008).
D34.“Comprehensive doping and temperature studies of spin relaxation in InSb,” D. Guzun, E. Decuir Jr., V. Kunets, Y. Mazur, G.J. Salamo, P.A.R.D. Jayathilaka, S.Q. Murphy, T.D, Mishima, and M.B. Santos, Appl. Phys. Lett. 95, 241903 (2009).
D35.“Dynamic Nuclear Polarization and Nuclear Magnetic Resonance in the Simplest Pseudospin Quantum Hall Ferromagnet,” H.W. Liu, K.F. Yang, T.D. Mishima, M.B. Santos, Y. Hirayama, submitted to Phys. Rev. Lett.,