HAEF IB - MATH HL
TEST 5
Derivatives
Date: 27 March 2018
by Christos Nikolaidis
Paper 1: Without GDC
Name:______
Questions
1.[Maximum mark: 5]
Show from first principles that the derivative of is
......
......
......
......
......
......
......
......
......
......
......
......
......
2.[Maximum mark: 6]
Find the derivatives of the following functions
(a) (b) (c)
[2+2+2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3.[Maximum mark: 7]
Consider the differentiable function with
x / 0 / 1/ / 5
Given that , find
(a) [2 marks]
(b) [3 marks]
(c) the equation of the normal line to the curve at . [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4.[Maximum mark: 9]
Consider the function.
(a)Write down the domain of . [1 mark]
(b)Find the x-coordinate of the stationary point; determine its nature. [5 marks]
(c)There is a point of inflection at . Find the value of . [3 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5.[Maximum mark: 6]
The line is tangent to the curve atx=1.
Find the values of a andb.
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
6.[Maximum mark: 7]
Consider the curve
(a)Find [3 marks]
(b)Find the coordinates of the points on the curve where the tangent lines
are parallel to y-axis [4 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
Paper 2: With GDC
Name:______
Questions
1.[Maximum mark: 5]
Let . Find
(a) [1 mark]
(b) the equation of the normal line to the curve of at
expressing your answer in the form [4 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
2.[Maximum mark: 7]
The cubic function has a stationary point of inflection
at (2,3) while the gradient at is 3. Findthe values of a,b,c,d.
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
3.[Maximum mark: 6]
Show by mathematical induction that the n-th derivative of is
given by
for all .
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
4.[Maximum mark: 5]
Find the two points of the curve of which are closest to the point A(2,1).
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
5.[Maximum mark: 7]
Let be the point on the curve which is closest to the point A(2,0).
(a)Show that [5 marks]
(b)Hence find the value of and justify your answer. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
6.[Maximum mark: 10]
A rectangle is drawn so that its lower vertices are on the x-axis and its upper vertices are on the curve . The perimeter of this rectangle is denoted by P.
(a)Write down an expression for P. [3 marks]
(b)Find the exact value of the minimum perimeter P and justify
that it is a minimum. [5 marks]
(c)Find the value of P if the rectangle is a square. [2 marks]
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
Page 1