Supplemental dataTable S1. Water permeability of MIPs that transport non-aqua substrates.

AQP / Non-aqua substrate(s) transported / Water permeability / Osmotic Water Permeability (10-4 cm s-1) / Reference
Arabidopsis
AtPIP1;2
AtPIP2;1
AtPIP2;4
AtTIP1;1
AtTIP1;2
AtTIP1;3
AtTIP2;1
AtTIP2;3
AtTIP4;1
AtTIP5;1
AtNIP1;2
AtNIP5;1
AtNIP6;1 / CO2
H2O2
H2O2
H2O2, Urea
H2O2, Urea
Urea
Ammonia, Urea
Ammonia, H2O2
Urea
Urea
Glycerol, H2O2
Antimony, Arsenic, Boron
Antimony, Arsenic, Boron, Formamide, Glycerol, Urea / √

NT


NT


NT
NT

NT

√ / nd
nd
nd
100 – 150
190
nd
12.9
150
nd
nd
18
nd
nd
nd / Kammerloher et al., 1994**
Kammerloher et al., 1994**
-
Maurel et al., 1993**
Daniels et al., 1996**
-
Soto et al., 2008
Daniels et al., 1996**
-
-
Soto et al., 2008
-
Takano et al., 2006
Wallace andRoberts, 2005
Barley
HvPIP1;3
HvPIP1;4
HvPIP2;1
HvNIP2;1 / Boron
Boron
CO2
Silicon / √
NT


NT / 14 ± 0.03
nd
144 ± 0.19
293 ± 0.39
nd / Katsuhara andShibasaka, 2007
-
Katsuhara et al., 2002**
Katsuhara andShibasaka, 2007
-
Maize
ZmPIP1;1
ZmPIP1;5
ZmNIP2;1
ZmNIP2;2 / Boron
Urea
Silicon
Silicon / √

NT
NT / 20
15
nd
nd / Chaumont et al., 2000**
Gaspar et al., 2003
-
-
Rice
OsNIP2;1
OsNIP2;2 / Antimony, Arsenic, Boron, Silicon, Urea
Arsenic, Silicon / √
NT / nd
nd / Mitani et al., 2008
-
Soybean
GmNOD26 / Ammonia, Formamide, Glycerol / √ / 2.5 / Dean et al., 1999
Tobacco
NtAQP1
NtTIPa / CO2, Glycerol, Urea
Glycerol, Urea / √
√ / 14.5 ± 0.9
17.2 ± 1.9 / Biela et al., 1999
Gerbeau et al., 1999
Wheat
TaTIP2;1
TaTIP2;2 / Ammonia, Formamide
Ammonia / NT
√ / nd
1280 ± 1.1 / -
Bertl andKaldenhoff, 2007
Zucchini
CpNIP1 / Urea / NT / nd / -

NT: water permeability not tested; √: water permeability tested and the aquaporin shown to have at least some water activity; nd: osmotic water permeability not determined.

**Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122: 1025-1034.

**Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ(1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599.

**Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6: 187-199.

**Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43: 885-893.

**Maurel C, Reizer JU, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein -TIP creates water specific channels in Xenopus oocytes. EMBO J 12: 2241-3347.

Supplemental data Table S2. Chemical data on substrates transported by plant MIPs.

Transport substrate / Chemical formula/structure / Molecular radius (Å) / Molecular volume (Å3) / References
Ammonia / NH3 / na / na / na
Boric acid / B(OH)3
/ 2.573 / 71.537 / Dordas and Brown, 2001**
Carbon dioxide / CO2
/ na / na / na
Hydrogen peroxide / H2O2
/ 2.108 / 39.237 / In this study*
Silicic acid / Si(OH)4
/ 4.380 (diameter) / na / Ma et al., 2008
Urea / (NH2)2CO
/ 2.618 / 75.372 / Dordas and Brown, 2001**
Water / H2O
/ 1.924 / 29.885 / Dordas and Brown, 2001**

*The molecular radius and volume were calculated using the formula:

r =(Mr/ρNA*1/π*3/4)1/3 (adapted from Dordas and Brown, 2001**) where Mr is the molecular weight, ρ is the density in g/cm3 and NA is the Avogadro constant. The values for Mr and ρ were obtained from Lide (2008)**. na: data not available.

**Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235: 95-103.

**Lide DR (2008) Handbook of Chemistry and Physics, Ed 89, CRC Press, Inc., Boca Raton, FL.

1

Supplemental data Table S3. Examples of post-translational modifications reported for plant MIPs.

MIP / Plant / Non-aqua substrate(s) transported / Modified Residue(s) / Reference
Phosphorylation
GmNOD26
SoPIP2;1
PvTIP3;1
LjLIMP2
MpPIP1;1 / Soybean
(Glycine max)
Spinach
(Spinacia oleracea)
Bean
(Phaseolus vulgaris)
Lotus
(Lotus japonicus)
Touch-me-not
(Mimosa pudica) / Ammonia, Formamide, Glycerol
nd
nd
Glycerol
nd / S262 in C-terminus
S115 in loop B;
S274 in C-terminus
S7
S265
S131 / Guenther et al., 2003
Johansson et al., 1998
Maurel et al., 1995
Guenther and Roberts, 2000
Temmei et al., 2005**
Glycosylation
McTIP1;2 / Ice plant
(Mesembryanthemum crystallinum) / nd / N80, N97 / Vera-Estrella et al., 2004
Methylation
AtPIP2;1 / Arabidopsis
(Arabidpsis thaliana) / H2O2 / K3 (di-), E6 (mono-), K2 and E5 (tri) / Santoni et al., 2006
Acetylation
AtPIP1;1
AtPIP1;2
AtPIP1;3
AtPIP1;4 / Arabidopsis (Arabidopsis thaliana) / nd
CO2
nd
nd / E2 / Santoni et al., 2006

nd: non-aqua substrate(s) not determined.

** Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579: 4417-4422.

1

AQP/Substrate transported / Peptide Sequence / Predicted PhosphorylationSite /

Predicted Kinase

/ AQP/Substrate transported / Predicted Sequence / Predicted Phosphorylation Site / Predicted Kinase
Arabidopsis
AtNIP5;1
(Antimony, Arsenite, Boric acid) / PTPGTPGTP
GTPGTPGGP
HRKPTPRCK
MRVDSMSFD
VDSMSFDHR
RPVRSFRR- / T21(N)
T24(N)
T46(N)
S37(N)
S39(N)
Ser301(C) / P38MAPK/GSK3/cdk5
CKI/p38MAPK/GSK3/cdk5
RSK/p38MAPK/PKC/cdk5
cdc2
PKC
PKC / AtNIP6;1 (Antimony, Arsenite, Boric acid, Formamide, Glycerol, Urea) / STPSTPATT
TPATTPGTP
TTPGTPGAP
NGRYTPKSL
PSTPSTPAT
YTPKSLLKS
SLLKSCKCF
QVMASVSAA
GPATSASMN
KERRSFRR- / T12(N)
T16(N)
T19(N)
T40(N)
S11(N)
S43(N)
S47(N)
S168(TM3)
S246(Loop E)
S302(C) / GSK3/cdk5
GSK3/cdk5
P38MAPK/GSK3
P38MAPK/cdk5
PKC
PKC
PKC
PKC
cdc2
PKA
AtNIP1;2 (Glycerol, H2O2) / VAVNTQHDK
LREITKSGS
SFLKTVRNG
QDVCSGKHD
EITKSGSFL
TKSGSFLKT
VRNGSSR— / T76(Loop A)
T279(C)
T287(C)
S159(Loop C)
S281(C)
S283(C)
S292(C) / DNAPK
PKG
PKC
PKC
RSK/PKA
PKC/cdc2
PKC/PKA / AtTIP1;1 (H2O2, Urea) / NGATTPSGL
FFINTTHEQ
VVAGSGSGM / T54(Loop A)
T241(C)
S38(TM1) / GSK3/cdk5
CKII/PKG
cdc2
AtTIP1;2 (H2O2, Urea) / NGATTPSGL / T55(Loop A) / cdk5 / AtTIP1;3 (Urea) / IAIGTPGEA
DGPATPAGL
AFSLSYGVT / T10(N)
T54(Loop A)
S136(Loop C) / P38MAPK/GSK3/cdk5
P38MAPK/GSK3
PKC
AtTIP2;1 (Ammonia, Urea) / YAKLTSDAA
AALDTPGLV
VAFGSFDDS / T46(Loop A)
T53(Loop A)
S8(N) / PKC
P38MAPK
CKI / AtTIP2;3 (Ammonia, H2O2) / FSVSSLKAY
AKLTSDGAL / S17(TM1)
S47(Loop A) / PKC
PKA
AtTIP4;1 (Urea) / GGMGTPVHT / T124(Loop C) / P38MAPK/cdc2/cdk5 / AtTIP5;1 (Urea) / RMIPTSFSS
MIPTSFSSK
PTSFSSKFQ
GFGASVLEG
MVYGSFKNQ
DDRGSSTGD
DRGSSTGDA / T7(N)
S8(N)
S10(N)
S147(TM4)
S213(Loop E)
S248(C)
S249(C) / PKC
PKC
PKC/cdc2
cdc2
PKC
CKI
RSK
AtPIP1;2 (CO2) / ITVLTVMGV TSAQSDKDY
ARKLSLTRA* / T71(TM1)
S27(N)
S128(Loop B)* / PKC
CKII/PKC
RSK/PKA / AtPIP2;1 (H2O2) / LKKWSFYRA
ARKVSLPRA*
GGANSLADG
SARDSHVPV
VLRASGSKS
KSLGSFRSA / S 36(N)
S121(Loop B)*
S160(Loop C)
S198(Loop D)
S273(C)
S280(C) / PKA
PKA
DNAPK
PKA
PKC/PKA/cdc2
PKC
AtPIP2;4 (H2O2) / ARKVSLVRT*
NARDSHVPV / S121(Loop B)*
S198(Loop D) / PKA
PKA

Supplemental data Table S4.Putative phosphorylation sites in MIPs with non-aqua transport functions

1

AQP/Substrate transported / Peptide Sequence / Predicted Phosphorylation site / Predicted Kinase / AQP/Substrate transported / Predicted Sequence / Predicted Phosphorylation Site / Predicted Kinase
Barley
HvPIP1;3 (Boric acid) / ISVLTVMGV
ANRYSEHQP
NPSGSKCGT
ARKLSLTRA*
DAKRSARDS / T75(TM1)
S16(N)
S86(Loop A)
S134(Loop B)*
S207(Loop D) / PKC
PKA
cdc2
RSK/PKA
PKC / HvPIP1;4 (Boric acid) / ISVLTVMGV
ANRYSERQP
EELSSWSFY
NPSGSKCGT
ARKLSLTRA*
DAKRSARDS / T75(TM1)
S16(N)
S51(N)
S86(Loop A)
S134(Loop B)*
S207(Loop D) / PKC
PKA
cdc2
cdc2
RSK/PKA
PKC
HvPIP2;1 (CO2) / SKDYSDPPP
DAACSGVGT
ARKVSLIRA*
NARDSHIPV
AKLGSYRSN* / S20(N)
S79(Loop A)
S124(Loop B)*
S201(Loop D)
S282(C)* / cdc2
CKI
PKG
PKA
PKC / HvNIP2;1 (Silicic acid) / MASNSRSNS
SNSRSNSRA
SRSNSRATF
QKLSSFKLR
RRLQSQSVA / S5(N)
S7(N)
S9(N)
S272(C)
S280(C) / cdc2
cdc2
PKA
PKC
RSK/DNAPK
Maize
ZmPIP1;1 (Boric acid) / ISILTVMGV
VSKSTSKCA
VMGVSKSTS
ARKLSLTRA*
RARDSHVPI / T73(TM1)
T81(Loop A)
S78(Loop A)
S129(Loop B)*
S206(Loop D) / PKC
PKC
PKC
RSK/PKA
PKA / ZmPIP1;5 (Urea) / ISILTVMGV
ANRYSERQP
EELTSWSFY
VMGVSKSSS
VSKSSSKCA
SKSSSKCAT
ARKLSLTRA*
DAKRSARDS / T73(TM1)
S16(N)
S49(N)
S78(Loop A)
S81(Loop A)
S82(Loop A)
S130(Loop B)*
S203(Loop D) / PKC
PKA
cdc2
PKC
PKC
PKC
RSK/PKA/PKG
PKC
ZmNIP2;1 (Silicic acid) / LGTTTPTGP
MSTNSRSNS
AQNSSMPPT
YYDRSLADI
GIYGSDKDR
EEAPSHKDM
HKDMSQKLS
SQKLSSFKL
QKLSSFKLR
RRLQSQSVA / T156(Loop C)
S5(N)
S27(N)
S36(N)
S72(Loop A)
S262(C)
S267(C)
S271(C)
S272(C)
S280(C) / P38MAPK/cdk5
cdc2
DNAPK/cdc2
DNAPK
PKC
cdc2
DNAPK/PKC
PKC
PKC
RSK/DNAPK / ZmNIP2;2 (Silicic acid) / AAASTTSRT
AASTTSRTN
IGTTTPSGP
PVIGTLSGA
SRTNSRVNY
KKVISEVVA
NRRISQLGQ
QRLSSFKLR
RRMQSQLAA / T6(N)
T7(N)
T161(Loop C)
T250(TM6)
S12(N)
S56(TM1)
S83(TM2)
S276(C)
S284(C) / PKC
PKC
P38MAPK/cdk5
DNAPK/cdc2
PKA
Cdc2
RSK
PKC
RSK
Rice
OsNIP2;1 (Antimony, Arsenite, Boric acid, Silicic acid, Urea) / IGTTTPVGP
SRTNSRANY
AAGISGSDL
KEGSSQKLS
QKLSSFKLR / T158(Loop C)
S10(N)
S72(TM1)
S268(C)
S273(C) / P38MAPK/cdk5
RSK/PKA/PKG
cdc2
DNAPK/PKC
PKC / OsNIP2;2 (Arsenite, Silicic acid) / LGTTTPTGP
PVVGTLSGA
SRTNSRVNY
MKRISQLGQ
QLGQSVVGG
QKLSSFKLR
RRLQSQSMA / T161(Loop C)
T250(TM6)
S12(N)
S83(TM2)
S88(TM2)
S279(C)
S287(C) / P38MAPK/cdk5
cdc2
PKA/PKG
PKA
cdc2
PKC
RSK/DNAPK/PKA
AQP/Substrate transported / Peptide Sequence / Predicted PhosphorylationSite / Predicted Kinase / AQP/Substrate transported / Predicted Sequence / Predicted Phosphorylation Site / Predicted Kinase
Soybean
GmNOD26 (Ammonia, Formamide, Glycerol) / YSAGTESQE
IVRYTDKPL
PLSETTKSA
AGTESQEVV
QRSDSLVSV
IAFASTRRF
DKPLSETTK
TKSASFLKG
GRAASK--- / T8(N)
T250(C)
T257(C)
S10(N)
S30(N)
S106(Loop B)
S255(C)
S262(C)
S270(C) / CKII
PKC
PKC
DNAPK
PKA/cdc2
PKC
cdc2
cdc2
RSK/PKC/PKA
Tobacco
NtAQP1 (CO2, Glycerol, Urea) / TAAQTDKDY
GELSSWSFY
KRSDSLCSS
ARKLSLTRA* / T28(N)
S48(N)
S81(Loop A)
S129(Loop B)* / CKII/PKC/cdc2
cdc2
RSK/PKA
RSK/PKA/PKG / NtTIPa (Glycerol, Urea) / AGLETPVHT
IAVGSSREA
NPARSFGPA / T125(Loop C)
S8(N)
S198(Loop E) / P38MAPK/cdk5
PKC
PKG
Wheat
TaTIP2;1 (Ammonia, Formamide) / YTKVSGGAP
THGLSGVGA / Ser47(Loop A)
Ser134(Loop C) / PKC
CKI / TaTIP2;2 (Ammonia) / FSLASFKAY
YTKVSGGAP
THGLSGVGA / S18(TM1)
S47(Loop A)
S134(Loop C) / PKC
PKC
CKI
Zucchini
CpNIP1 (Urea) / PAVTTAFAA
CAAFTLRLL
LGTTTPSGS
AQRVSQLGA
TTTPSGSDL
LGAWSYKFI
FIRASDKPV
VHLISPHSF
PHSFSLKLR
LRRMSRSDV
RMSRSDVGE / T112(Loop B)
T142(TM3)
T157(Loop C)
S79(TM2)
S159(Loop C)
S252(TM6)
S259(C)
S267(C)
S272(C)
S279(C)
S281(C) / PKC
PKC
Cdk5
DNAPK
cdc2
PKC
PKC/PKA
cdk5
cdc2
RSK/PKA/PKG
CKII

The putative phosporylation sites and predicted kinases were predicted using NetPhos ( and NetPhosK ( The putative phosphorylation peptide sequences are shown with the predicted phosphorylated residues underlined. The location of the phosphorylation site [N-terminus (shown as N) or C- terminus (shown as C), Loop C, Loop E, Loop A, TM (transmembrane helix, with its number)] is given in parentheses. The experimentally proven phosphorylation sites are shown inbold. The residues corresponding to S262 in GmNOD26 and predicted as putative phosphorylation sites are highlighted in grey. The residues corresponding to S115 and S274 in SoPIP2;1 and predicted as putative phosphorylation sites are shown with an asterisk (*).

PKA: protein kinase A (cAMP-dependent protein kinase); PKC: protein kinase C; PKG: cyclic GMP-dependent protein kinase (protein kinase G); cdc2: cell division cycle 2 kinase (cdk1); p38MAPK: p38 mitogen-activated protein kinase; GSK3: glycogen synthase kinase 3;cdk5: cyclin-dependent kinase 5; CKI: casein kinase I; CKII: casein kinase II; RSK: ribosomal s6 kinase; DNAPK: DNA-dependent protein kinase.

1

Supplemental data Table S5. Putative O-glycosylation sites in MIPs with non-aqua transport functions

AQP/Substrate transported / Peptide Sequence / Predicted Glycosylation Site
Arabidopsis
AtNIP5;1 (Antimony, Arsenite, Boric acid) / GHISGAHL / S132 (Loop B)
AtNIP1;2 (Glycerol, H2O2) / GHISGAHF / S106 (Loop B)
AtNIP6;1 (Antimony, Arsenite, Boric acid, Formamide, Glycerol, Urea) / IPSTPSTP
GHISGAHL / T9(N)
S134 (Loop B)
AtTIP4;1 (Urea) / GHISGGHL / S74 (Loop B)
Barley
HvNIP2;1 (Silicic acid) / GHISGAHM / S103 (Loop B)
Maize
ZmNIP2;1 (Silicic acid) / GHISGAHM / S101 (Loop B)
ZmNIP2;2
(Silicic acid) / GHISGAHM / S106 (Loop B)
Rice
OsNIP2;1 (Antimony, Arsenite, Boric acid, Silicic acid, Urea) / GHISGAHM / S103 (Loop B)
OsNIP2;2
(Arsenite, Silicic acid) / GHISGAHM / S106 (Lop B)
Soybean
GmNOD26 (Ammonia, Formamide, Glycerol) / GHISGGHF / S92 (Loop B)
Zucchini
CpNIP1 (Urea) / GHISGAHM / S102 (Loop B)

The putative O-glycosylation sites were predicted using OGPET ( last accessed 16 November 2010). The putative glycosylation peptide sequences are shown, with the predicted glycosylated residues underlined. The location of the glycosylation site: N-terminus (shown as N) or Loop B (given in parentheses).

Supplemental data Table S6. Putative N-glycosylation sites in MIPs with non-aqua transport functions

AQP/Substrate transported / Peptide Sequence / Predicted Glycosylation Site / Potential Score*
Arabidopsis
AtPIP2;1 (H2O2) / NKSK / N240 (Loop E) / 0.6276
AtPIP2;4 (H2O2) / NESG / N8 (N) / 0.6372
AtTIP1;1 (H2O2, Urea) / NITL / N97 (Loop B) / 0.7509
AtTIP1;2 (H2O2, Urea) / NITL / N98 (Loop B) / 0.7589
AtTIP1;3 (Urea) / NVSG
NITL / N78 (TM2)
N97 (Loop B) / 0.5383
0.7547
AtTIP2;1 (Ammonia, Urea) / NISG / N76 (TM2) / 0.5954
AtTIP2;3 (Ammonia, H2O2) / NISG
NITL / N76 (TM2)
N95 (Loop B) / 0.6293
0.7777
AtTIP4;1 (Urea) / NWTD / N206 (Loop E) / 0.5516
AtTIP5;1 (Urea) / NVSG / N80 (TM2) / 0.7402
AtNIP5;1 (Antimony, Arsenite, Boric acid) / NDSV / N289 (C) / 0.5279
AtNIP6;1 (Antimony, Arsenite, Boric acid, Formamide, Glycerol, Urea) / NVSL / N75 (N) / 0.7318
Barley
HvPIP2;1 (CO2) / NTTD / N72 (Loop A) / 0.6651
Maize
ZmNIP2;1 (Silicic acid) / NSSM / N25 (N) / 0.5452
ZmNIP2;2 (Silicic acid) / NYSN / N15 (N) / 0.7780
Rice
OsNIP2;1 (Antimony, Arsenite, Boric acid, Silicic acid, Urea) / NNSR
NYSN
NGTM / N4 (N)
N13 (N)
N26 (N) / 0.7108
0.7391
0.5933
OsNIP2;2 / NYSN / N15 (N) / 0.7734
Soybean
GmNOD26 (Ammonia, Formamide, Glycerol) / NVTK
NTSE
NGTN / N16 (N)
N20 (N)
N150 (Loop C) / 0.7932
0.5844
0.5121
Wheat
TaTIP2;1 (Ammonia, Formamide) / NISG / N77 (TM2) / 0.5758
TaTIP2;2 (Ammonia) / NISG / N77 (TM2) / 0.5757
Zucchini
CpNIP1 (Urea) / NGSD / N71 (TM1) / 0.6991

The putative N-glycosylation sites were predicted using NetNGlyc 1.0 ( last accessed 16 November 2010). The putative glycosylation peptide sequences are shown, with the predicted glycosylated residues underlined. The location of the glycosylation site: N-terminus (shown as N) or C-terminus (shown as C), Loop A, Loop B, Loop C, Loop E, TM (transmembrane helix, with its number). *The potential score is the likelihood of the asparagine (N) being glycosylated

Supplemental data Table S7. Modelled representative MIPs and the characteristics of the templates.

Representative MIP for different substratesa / Modelled Residue Rangeb / Templatec / Sequence Identity (%)d
Ammoniae
TaTIP2;2 / 19 - 236 / 3gd8A; HsAQP4 / 39.46
Boric acide
HvPIP1;3 / 44 - 285 / 3cllA; SoPIP2;1 / 74.38
CO2e
NtAQP1 / 38 - 280 / 3cn6B; SoPIP2;1 / 74.89
H2O2e
AtPIP2;1 / 28 - 273 / 3cllA; SoPIP2;1 / 79.67
Silicic acide
ZmNIP2;2 / 49 - 262 / 3gd8A; HsAQP4 / 32.57
Ureae
AtTIP2;1 / 16 - 238 / 3gd8A; HsAQP4 / 38.05

aRepresentative MIP chosen to be modelled. bThe residue range of the representative MIP that could be modelled. cThe PDB ID ( of the template chosen using ‘automated modelling’ or ‘template identification’ on SWISS-MODEL ( dSequence identity of chosen representative aquaporin to chosen template. eSubstrate transported by the MIPs.

1

Supplemental data Table S8. Structural characteristics of MIPs transporting non-aqua substrates*

MIP / Protein length (aa) / Length of N-terminus
(aa) / Length of C-terminus
(aa) / Lengths of trans-membrane helices (aa) / Lengths of loops (aa)
TM1 / TM2 / TM3 / TM4 / TM5 / TM6 / Loop A / Loop B / Loop C / Loop D / Loop E
Ammonia
GmNOD26
TaTIP2;1 TaTIP2;2
AtTIP2;1
AtTIP2;3 / 271
248
248
250
250 / 35
17
17
16
16 / 24
14
14
15
15 / 26
.
.
.
. / 19
22
.
.
. / 24
.
.
.
. / 23
.
.
.
. / 18
.
.
.
. / 21
.
.
.
. / 10
12
.
.
. / 21
.
.
.
. / 17
15
.
17
. / 9
11
.
.
. / 24
.
.
.
.
Boric acid
ZmPIP1
AtNIP5;1
AtNIP6;1
OsNIP2;1
HvPIP1;3
HvPIP1;4 / 287
304
305
298
292
292 / 51
75
77
46
53
53 / 10
18
17
41
10
10 / 26
.
.
.
.
. / 22
.
.
.
.
. / 24
.
.
.
.
. / 23
.
.
.
.
. / 18
.
.
.
.
. / 21
.
.
.
.
. / 10
7
.
.
12
. / 20
21
.
.
.
. / 21
16
.
.
21
. / 14
9
.
.
14
. / 27
24
.
.
27
.
CO2
NtAQP1
AtPIP1;2
HvPIP2;1 / 287
286
286 / 50
49
37 / 10
10
14 / 26
.
. / 22
.
. / 24
.
. / 23
.
. / 18
.
. / 21
.
. / 10
.
18 / 21
.
. / 21
.
. / 14
.
. / 27
.
.
H2O2
AtTIP1;1
AtTIP1;2
AtPIP2;1
AtPIP2;4
AtTIP2;3
AtNIP1;2 / 251
253
287
291
250
294 / 18
19
36
36
16
49 / 14
15
18
22
15
26 / 26
.
.
.
.
. / 22
.
.
.
.
. / 24
.
.
.
.
. / 23
.
22
.
23
. / 18
.
.
.
.
. / 21
.
.
.
.
. / 12
.
16
.
12
7 / 21
.
.
.
.
. / 17
.
21
.
17
24 / 11
.
15
.
11
9 / 24
.
27
.
24
.
Silicic acid
OsNIP2;1
OsNIP2;2
HvNIP2;1
ZmNIP2;1
ZmNIP2;2 / 298
298
295
295
294 / 46
49
46
44
49 / 41
38
38
40
34 / 26
.
.
.
. / 22
.
.
.
. / 24
.
.
.
. / 23
.
.
.
. / 18
.
.
.
. / 21
.
.
.
. / 7
.
.
.
. / 21
.
.
.
. / 16
.
.
.
. / 9
.
.
.
. / 24
.
.
.
.
Urea
NtAQP1
NtTIPa
ZmPIP1;5
AtTIP1;1
AtTIP2;1
CpNIP1
AtTIP1;2
AtTIP4;1
AtNIP6;1
AtTIP1;3
AtTIP5;1
OsNIP2;1 / 287
247
288
251
250
288
253
249
305
252
256
298 / 50
16
51
18
16
45
19
16
77
18
20
46 / 10
15
10
14
15
32
15
18
17
15
18
41 / 26
.
.
.
.
.
.
.
.
.
.
. / 22
.
.
.
.
.
.
.
.
.
.
. / 24
.
.
.
.
.
.
.
.
.
.
. / 23
.
.
.
.
.
.
.
.
.
.
. / 18
.
.
.
.
.
.
.
.
.
.
. / 21
.
.
.
.
.
.
.
.
.
.
. / 10
9
10
12
.
7
12
9
7
12
.
7 / 21
.
.
.
.
.
.
.
.
.
.
. / 21
17
21
17
.
16
17
.
16
17
.
16 / 14
11
14
11
11
9
11
.
9
11
.
9 / 27
24
27
24
.
.
.
.
.
.
.
.

*Alignments provided in Fig. S1. aa: amino acids. Dots represent the same value as the number immediately above.

1