2

Marsbugs: The Electronic Astrobiology Newsletter, Volume 11, Number 1, 2 January 2004

Marsbugs: The Electronic Astrobiology Newsletter

Volume 11, Number 1, 2 January 2004

Editor/Publisher: David J. Thomas, Ph.D., Science Division, Lyon College, Batesville, Arkansas 72503-2317, USA.

Marsbugs is published on a weekly to monthly basis as warranted by the number of articles and announcements. Copyright of this compilation exists with the editor, except for specific articles, in which instance copyright exists with the author/authors. E-mail subscriptions are free, and may be obtained by contacting the editor. Information concerning the scope of this newsletter, subscription formats and availability of back-issues is available from the Marsbugs web page (http://www.lyon.edu/projects/marsbugs). The editor does not condone "spamming" of subscribers. Readers would appreciate it if others would not send unsolicited e-mail using the Marsbugs mailing lists. Persons who have information that may be of interest to subscribers of Marsbugs should send that information to the editor.

2

Marsbugs: The Electronic Astrobiology Newsletter, Volume 11, Number 1, 2 January 2004

Articles and News

Page 1 THE TOP SCIENCE STORIES OF 2003

From Scientific American

Page 2 THE DARK DUNES DEBATE: SHOULD MARS EXPRESS RESOLVE SEASONAL BLOTCHES?

From Astrobiology Magazine

Page 3 ISIDIS, MARTIAN IMPACT BASIN: AN INTERVIEW WITH COLIN PILLINGER

From Astrobiology Magazine

Page 4 MARS EXPLORATION AND THE SEARCH FOR LIFE IS A PRIORITY SAYS UK SCIENCE MINISTER
Beagle 2 Team release

Page 5 PLANETARY SURVIVOR STRATEGY: OUTEAT, OUTWEIGH, OUTLAST!

Harvard-Smithsonian Center for Astrophysics release 03-26

Page 5 DINNER WITH CAPTAIN KIRK: AN INTERVIEW WITH WILLIAM SHATNER

From Astrobiology Magazine

Page 7 BACTERIA DISCOVERED IN 4,000 FEET OF ROCK FUELS MARS COMPARISON

By Mark Floyd

Page 7 DESTINATION: GUSEV CRATER

By Karen Miller

Page 8 CLARK ASKS INPUT FROM SPACE COMMUNITY

Mars Society release

Page 8 MARTIAN CHRONICLES XIV: PROVING GROUNDS

From Astrobiology Magazine

Page 9 ASTROBOT BIFF STARLING PREPARES FOR MARS LANDING

From SpaceDaily

Announcements

Page 9 MARSFEST '04

By Chris Vancil

Page 10 NEW ADDITIONS TO THE ASTROBIOLOGY INDEX

By David J. Thomas

Mission Reports

Page 10 SCIENTISTS AND ENGINEERS STILL WAITING TO HEAR FROM BEAGLE 2 ON MARS

ESA release

Page 10 COMMUNICATION STRATEGY OF THE BEAGLE 2 "THINK TANK"
Beagle 2 Team release

Page 11 ODYSSEY REPORTS STILL NO CONTACT WITH BEAGLE 2
Particle Physics and Astronomy Research Council (UK) release

Page 12 MARS EXPLORATION ROVER MISSION STATUS

NASA/JPL release 2003-174

Page 12 MAJOR MARS EXPRESS SCHEDULED ORBIT CHANGE SUCCESSFUL

ESA release

Page 13 MARS GLOBAL SURVEYOR IMAGES

NASA/JPL/MSSS release

Page 13 NASA COMET HUNTER CLOSING ON QUARRY

NASA/JPL release 2003-175

2

Marsbugs: The Electronic Astrobiology Newsletter, Volume 11, Number 1, 2 January 2004

2

Marsbugs: The Electronic Astrobiology Newsletter, Volume 11, Number 1, 2 January 2004

THE TOP SCIENCE STORIES OF 2003

From Scientific American

24 December 2003

Below, and in no particular order, are 25 of the stories that most impressed us here at Scientific American.com. Some are included on the basis of their significance, others for sheer fun.

1.  Skulls of Oldest Homo sapiens Recovered

2.  Gecko-Inspired Adhesive Sticks It to Traditional Tape

3.  SARS: Caught Off Guard

4.  China's Great Leap Upward

5.  Four-Winged Dinosaur and the Dawn of Flight

6.  New Drug May Mitigate Peanut Allergy

7.  Healing the Grid

8.  The Infant Universe, In Detail

9.  The Cold Odds against Columbia

10.  Pet Prairie Dogs Suspected in U.S. Monkeypox Outbreak

11.  New Study Finds Agent Orange Use Was Underestimated

12.  Large Fish Populations Imperiled

13.  Harvesting Hydrogen Fuel from Plants Gets Cheaper

14.  Mare Gives Birth to Own Clone

15.  Electronic Paper Speeds Up for Videos

16.  Number of Threatened Species Tops 12,000

17.  Autopsies, No Scalpel Required

18.  100 Years of Flight: The Equivocal Success of the Wright Brothers

19.  Ink Analysis Smudges Case for Forgery of Vinland Map

20.  Scientists Discover New Frog Family

21.  E-mail Study Corroborates Six Degrees of Separation

22.  Celebrating the Genetic Jubilee: A Conversation with James Watson

23.  Astronomers Find Most Ancient Planet Yet

24.  Decaf Coffee Plants Developed

25.  Claim of Nonhuman-Induced Global Warming Sparks Debate

Read the stories at http://www.sciam.com/article.cfm?chanID=sa003&articleID=0001F041-96D1-1FE8-96D183414B7F0000.


THE DARK DUNES DEBATE: SHOULD MARS EXPRESS RESOLVE SEASONAL BLOTCHES?

From Astrobiology Magazine

29 December 2003

Experiments planned on board Mars Express may provide clues to what is happening in the mysterious dark dunes and craters on Mars. Although hundreds of thousands of images have been part of previous mapping missions, as much as ninety-seven percent of the planet remains unexplored at high resolution.

As part of its two to four year survey, the Mars Express orbiter passes within 250 kilometers [150 miles] of the surface at closest approach. Employing seven major instruments for its on-the-spot analyses, the orbiting Mars Express will be able to identify signs of water in liquid, solid, or vapor form on Mars. During each orbit, the overhead spacecraft will collect data from Mars between a half-hour to an hour, while spending the rest of its time broadcasting those results back to Earth.

Its onboard camera offers high-resolution stereo views of Mars. Its comprehensive maps will feature 10 meter resolution, but some particularly interesting regions will get a close-up view to 2 meters [about the size of small car, as seen from orbit]. So scientists are now deciding where some of the more interesting places to start mapping are. One spot may be the dunes and crater floors. Images from earlier orbiting cameras continues to fuel such visual detective work, none perhaps more than the waxing and waning of dark "colony-like" blotches recorded by the Mars Orbital Camera. The heated discussion has become known as "the dark dunes" debate.

A recent European Space Agency (ESA) meeting agreed that the seasonal variation in dark and light spots seen on Mars is certainly fascinating. They concluded that the dark dunes might well be worth a detailed look by the recently successfully achieved orbit of Mars Express, the European Space Agency's Mars mission. Agustin Chicarro, ESA project scientist for Mars Express, called the meeting after the spots began fuelling controversy here on Earth in the summer of 2002. "As a geologist, I found the spots quite perplexing and very exciting. I wanted to tap a broad spectrum of expert opinion to decide whether they warrant closer examination by Mars Express," he said.

The dark dunes debate began when András Horváth, Tibor Gánti and Eörs Szathmáry from the Planetarium and the Institute for Advanced Study, Budapest, suggested that the spots could be colonies of martian microbes which wax and wane with the season. The spots appear on dunes found on the floors of craters in the south and north polar regions.

The Hungarian team has examined the southern spots in detail. "They appear in late winter and by summer they have disappeared. They appear first at the margins of the dune fields and rarely appear on the ridges of dunes," Szathmary told the meeting.

Their location (which is independent of the elevation of the land) and shape (which is circular on flat surfaces but elongated on slopes) seems to be at odds with a physical explanation alone, say the Hungarian scientists who have proposed a biological explanation instead. A pocket of water, which would normally evaporate instantly in the thin martian atmosphere, is trapped around them by the overlying ice. As this ice layer thins, the microorganisms show through gray. When it has completely melted, they rapidly desiccate and turn black. This explains why many dark dune spots have a black center surrounded by a gray aureole, say the Hungarian scientists.

On the other side of the debate, Michael Malin and Kenneth Edgett, designers of the Mars Orbital Camera on board NASA's Mars Global Surveyor spacecraft, which recorded the images of the spots, had previously suggested an explanation involving evaporation and re-freezing of predominantly carbon dioxide ice. Their hypothesis is the dark dunes are not biological. The Mars Orbiter Camera has already taken more than 120,000 pictures of Mars. Many of the camera's images have sharp enough resolution to show features as small as a school bus. An online gallery of pictures taken by the camera is available (http://www.msss.com/moc_gallery/). The meeting considered these and other possibilities.

The location and shape of the spots is at odds with a physical explanation. (A) Spots develop on the dark dunes rather than on the stony soil nearby. (B) Spots are also ellipsoid in shape or even (C) fan-shaped. Image credits: NASA/JPL/MSSS.

Russell Crater and mudflows

Another fascinating place has been suggested by a pair of German scientists, who have examined close-up martian dune images and found what appears to resemble terrestrial mudflows. On Earth, particularly in alpine and arctic regions, such a debris trail is left behind when fine-grained soil mixes with liquid water from intense rainfall or sudden melting of surface ice and frost.

The researchers—Dennis Reiss and Ralf Jaumann—published their findings in a recent edition of the Geophysical Research Letters. The pair are scientists at the Institute of Space Sensor Technology and Planetary Exploration, German Aerospace Center, in Berlin. The article's title, "Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field," suggests the intriguing location for some of the best satellite images of what the researchers conclude may be recent, liquid water on Mars.

While a full explanation is ambiguous, the scientists note that the two key ingredients—seasonal thawing, sandy soil with slopes—seem consistent with what may be a brief and relatively recent summer noon of liquid water in Russell Crater. Based on the lack of small craters in the dune fields, the team estimates its surface age at 100 to 10,000 years—a recent soil pattern. The researchers conclude that on the dunes of Russell Crater: "liquid water may be stable over a limited period around noon/early afternoon in late spring/early summer under current climatic conditions," and likely within the last thousand years.

Close-up view

Experiments on board Mars Express could help to determine whether the same had happened on Mars. Several instruments on the Mars Express orbiter can observe selected areas of the martian surface at very high resolution.

"If the dark dune spots are selected as targets for analysis, many outstanding questions about the spots could be answered," said Chicarro.

OMEGA, the infrared mapping spectrometer, for example, could determine the mineral composition of the spots, allowing some hypotheses to be eliminated. PFS, the planetary Fourier spectrometer, could measure the amount of carbon dioxide and water ice present, the temperature of the spots compared with their surroundings and the pressure of the local atmosphere.

MARSIS, the radar sounder, could determine the thickness of the ice and the HRSC, the camera, could take high-resolution, 3D, full-color images of the spots. The radar uses a large 40 meter antenna to collect the sound waves that bounce off any density pockets below the rusty-red soil. If pockets of water are found to a depth of 2 kilometers [1.2 miles], then theories of active hydrology on Mars will be borne out. Subterranean aquifers are considered one possible way in which liquid water could exist in the frigid, hostile conditions, where the atmosphere is about one percent of the Earth's pressure.

Images and data from orbit may eliminate some hypotheses, but proof of life on Mars will require landers and possibly humans to see the evidence firsthand. A future Mars lander could carry a Raman spectrometer capable of detecting the sorts of pigments used by microbes on Earth to harness solar energy for photosynthesis and to protect them from UV, Wynn-Williams told the meeting. Opportunities to fly this and other innovative instruments to Mars could be provided by Aurora, ESA's program of planetary exploration currently under discussion.

Malcolm Fridlund, project scientist for Darwin, an ESA mission to search for life on extrasolar planets, however, ended the meeting on a philosophical note which expressed an understandable sentiment.

"I find it hard to believe," he said "that martian life, the last vestiges of a fertile time 3.5 billion years ago, has hung on by a thread for all this time until humans have developed the technology to find it."

Imaging by Mars Express should last at least one martian year (687 days), with further operations possibly extending into 2008.

Read the original article at http://www.astrobio.net/news/article738.html.

ISIDIS, MARTIAN IMPACT BASIN: AN INTERVIEW WITH COLIN PILLINGER

From Astrobiology Magazine

29 December 2003

On Christmas day, the European Space Agency's (ESA's) Beagle 2 lander is believed to have touched down on the surface of Mars, in a region known as Isidis Planitia. Beagle 2 contained a suite of scientific instruments designed to search directly for evidence of life on Mars. Although scientists expected to receive a signal from the lander shortly after touchdown, they have not yet detected one. They remain hopeful, however; there will be more opportunities to communicate with the spacecraft in the coming week. Earlier this month, Astrobiology Magazine spoke with Professor Colin Pillinger (Open University, Milton Keynes, UK), who heads the group that conceived and developed Beagle 2, and that is responsible for its scientific mission.

Astrobiology Magazine (AM): Can you start by describing the goal of the Beagle 2 experiments?

Colin Pillinger (CP): Very briefly, it's to see whether there was, is or could be life on Mars.

AM: And is the Gas Analysis Package experiment the main experiment that you plan to do to determine that?

CP: Yeah, but we see this as a total package. I don't want to find myself in a position of having information which I can't interpret in context. We want to understand the chemistry of rocks, the mineralogy of rocks. We'll look at them with our microscopes and we'll see the environment in which we find them with our panoramic cameras. We will then analyze them using the Gas Analysis Package to see whether there are minerals deposited from water, whether there is organic matter which could be the relict material of organisms that lived in the water, and so on.

We're going to try to take samples from inside rocks so that they are much more pristine material than you find on the outsides of rocks, and we're looking for soils beneath the surface, particularly one which is likely to have been protected by a large rock. So it's the whole package. We like to think of this as a holistic experiment. It's a complete laboratory.